

LOW EMITTANCE MUON BEAMS FROM POSITRONS

Francesco Collamati (INFN-Roma) 29.09.2017

Outline

- Introduction: Why a muon collider
- Proposal for a novel technique for direct muon production
 - Target choice & accelerator scheme
 - Multi-turn simulations
 - Muons' emittance
- Experimental tests
- Conclusion and perspectives

• PROs:

• PROs:

• PROs:

- Accelerator:
 - No *synchrotron radiation* (limit of circular e⁺e⁻ colliders)
 → much **higher energies** are reachable
 (~3TeV in 4km circumference)

• PROs:

- Accelerator:
 - No *synchrotron radiation* (limit of circular e⁺e⁻ colliders)
 → much **higher energies** are reachable
 (~3TeV in 4km circumference)
 - Much smaller energy spread of the beam
 - → much higher energy **resolution**
 - Precise measurements and access to new resonances

• PROs:

- Accelerator:
 - No *synchrotron radiation* (limit of circular e⁺e⁻ colliders)
 → much **higher energies** are reachable (~3TeV in 4km circumference)
 - Much smaller energy spread of the beam
 - → much higher energy **resolution**
 - Precise measurements and access to new resonances
- Physics:
 - Higgs coupling ∞m^2
 - → Much bigger production of Higgs boson (also s-channel)

• CONs:

• CONs:

- Muons decay in 2.2µs!
 - The whole **chain** (generation, acceleration, interaction) must be very **quick**!

• CONs:

- Muons decay in 2.2µs!
 - The whole **chain** (generation, acceleration, interaction) must be very **quick**!
- Traditional muon production scheme leads to large emittance beams:

 $p + target \rightarrow \pi/K \rightarrow \mu$

- Muons are produced with a variety of angles and energies $(P_\mu{\sim}100 MeV/c)$
- Cooling needed!

→ tradeoff monochromaticity/luminosity

Direct muon production Novel Approach

• Exploiting the interaction of accelerated positrons on fixed target: $e^+e^- \rightarrow \mu^+\mu^-$

- Exploiting the interaction of accelerated positrons on fixed target: $e^+e^- \rightarrow \mu^+\mu^-$
 - Advantages:

- Exploiting the interaction of accelerated positrons on fixed target: $e^+e^- \rightarrow \mu^+\mu^-$
 - Advantages:
 - Low emittance possible:

 θ_{μ} is tunable with \sqrt{s} , and is very small close to the threshold

Direct muon production Novel Approach

- Exploiting the interaction of accelerated positrons on fixed target: $e^+e^- \rightarrow \mu^+\mu^-$
 - Advantages:
 - **Low emittance** possible: θ_{μ} is tunable with \sqrt{s} , and is very small close to the threshold
 - Small energy spread: depends on \sqrt{s} , small at threshold (210MeV)

Direct muon production Novel Approach

- Exploiting the interaction of accelerated positrons on fixed target: $e^+e^- \rightarrow \mu^+\mu^-$
 - Advantages:

Lab. Frame e^+ 45GeV $e^$ e^-

Low emittance possible:

 θ_{μ} is tunable with \sqrt{s} , and is very small close to the threshold

• Small energy spread: depends on \sqrt{s} , small at threshold (210MeV)

- Exploiting the interaction of accelerated positrons on fixed target: $e^+e^- \rightarrow \mu^+\mu^-$
 - Advantages:

- Novel Approach ted ted_{e^+} ted_{e^+}
- **Low emittance** possible: θ_{μ} is tunable with \sqrt{s} , and is very small close to the threshold
- Small energy spread: depends on \sqrt{s} , small at threshold (210MeV)
- Low background: low emittance allows for good luminosity with reduced muon flux
- **Reduced losses** from decay: asymmetric collision allows high boost (and both muons' collection)

Direct muon production Novel Approach

- Exploiting the interaction of accelerated positrons on fixed target: $e^+e^- \rightarrow \mu^+\mu^-$
 - Advantages:

- Lab. Frame e^+ $e^ e^ e^-$
- **Low emittance** possible: θ_{μ} is tunable with \sqrt{s} , and is very small close to the threshold
- Small energy spread: depends on \sqrt{s} , small at threshold (210MeV)
- Low background: low emittance allows for good luminosity with reduced muon flux
- **Reduced losses** from decay: asymmetric collision allows high boost (and both muons' collection)
- Disadvantages:
 - Rate: much smaller cross section wrt protons (µb vs mb)

Direct muon production Novel Approach

• Due to low cross section, the target choice is crucial: $N_{\mu\mu} = N_{e^+}\rho_{e^-}L\sigma_{(e^+e^- \rightarrow \mu^+\mu^-)}$

- Due to low cross section, the target choice is crucial: $N_{\mu\mu} = N_{e^+}\rho_{e^-}L\sigma_{(e^+e^- \rightarrow \mu^+\mu^-)}$
- Criteria:

- Due to low cross section, the target choice is crucial: $N_{\mu\mu} = N_{e^+}\rho_{e^-}L\sigma_{(e^+e^- \rightarrow \mu^+\mu^-)}$
- Criteria:
 - ↓ emittance → thin target

- Due to low cross section, the target choice is crucial: $N_{\mu\mu} = N_{e^+}\rho_{e^-}L\sigma_{(e^+e^-\to\mu^+\mu^-)}$
- Criteria:
 - ↓ emittance → thin target
 - ↑ rate → high Z&ρ

- Due to low cross section, the target choice is crucial: $N_{\mu\mu} = N_{e^+}\rho_{e^-}L\sigma_{(e^+e^- \rightarrow \mu^+\mu^-)}$
- Criteria:
 - ↓ emittance → thin target
 - ↑ rate → high Z&p
 - **positron loss** (brem.+bhabha) (recirculation) $\rightarrow \log Z$

- Due to low cross section, the target choice is crucial: $N_{\mu\mu} = N_{e^+}\rho_{e^-}L\sigma_{(e^+e^-\to\mu^+\mu^-)}$
- Criteria:
 - ↓ emittance → thin target
 - ↑ rate → high Z&p
 - **\downarrow positron loss** (brem.+bhabha) (recirculation) \rightarrow low Z
 - Very intense e⁺ source (10¹⁸ e⁺/s @T)

- Due to low cross section, the target choice is crucial: $N_{\mu\mu} = N_{e^+}\rho_{e^-}L\sigma_{(e^+e^-\to\mu^+\mu^-)}$
- Criteria:
 - ↓ emittance → thin target
 - ↑ rate → high Z&p
 - **\downarrow positron loss** (brem.+bhabha) (recirculation) \rightarrow low Z
 - Very intense e⁺ source (10¹⁸ e⁺/s @T)
- Possible choices:

- Due to low cross section, the target choice is crucial: $N_{\mu\mu} = N_{e^+}\rho_{e^-}L\sigma_{(e^+e^- \rightarrow \mu^+\mu^-)}$
- Criteria:
 - ↓ emittance → thin target
 - ↑ rate → high Z&p
 - **\downarrow positron loss** (brem.+bhabha) (recirculation) \rightarrow low Z
 - Very intense e⁺ source (10¹⁸ e⁺/s @T)
- Possible choices:
 - Heavy materials (Cu...) \Leftrightarrow thin target ($\epsilon_{\mu} \propto L$)
 - Small $\epsilon_{\mu},$ but high ρ brings to MS and e^+ loss

- Due to low cross section, the target choice is crucial: $N_{\mu\mu} = N_{e^+}\rho_{e^-}L\sigma_{(e^+e^-\to\mu^+\mu^-)}$
- Criteria:
 - ↓ emittance → thin target
 - ↑ rate → high Z&p
 - **\downarrow positron loss** (brem.+bhabha) (recirculation) \rightarrow low Z
 - Very intense e⁺ source (10¹⁸ e⁺/s @T)
- Possible choices:
 - Heavy materials (Cu...) ⇔ thin target (ε_µ∝L)
 Small ε_µ, but high ρ brings to MS and e⁺ loss
 - Very light materials \Leftrightarrow thick target O(1m)
 - Emittance growth due to extended production of muons

- Due to low cross section, the target choice is crucial: $N_{\mu\mu} = N_{e^+}\rho_{e^-}L\sigma_{(e^+e^- \rightarrow \mu^+\mu^-)}$
- Criteria:
 - ↓ emittance → thin target
 - ↑ rate → high Z&p
 - **\downarrow positron loss** (brem.+bhabha) (recirculation) \rightarrow low Z
 - Very intense e⁺ source (10¹⁸ e⁺/s @T)
- Possible choices:
 - Heavy materials (Cu...) ⇔ thin target (ε_μ∝L)
 Small ε_μ, but high ρ brings to MS and e⁺ loss
 - Very light materials \Leftrightarrow thick target O(1m)
 - Emittance growth due to extended production of muons
 - Possible **tradeoff**: not too heavy materials (Be, C, Li) and not too thin target

8

8

• From e⁺ source to ring:

- e- on conventional Heavy Thick Target (TT) for e+e- pairs production
 - possibly with γ produced by e⁺ stored beam on T
- Adiabatic Matching Device (AMD) for e⁺ collection

• Acceleration (linac / booster), injection

8

• From e⁺ source to ring:

- e- on conventional Heavy Thick Target (TT) for e+e- pairs production
 - possibly with γ produced by e⁺ stored beam on T
- Adiabatic Matching Device (AMD) for e⁺ collection
- Acceleration (linac / booster), injection

▶ <u>e⁺ ring:</u>

A 6.3 km 45 GeV storage ring with target T for muon production

8

• From e⁺ source to ring:

- e- on conventional Heavy Thick Target (TT) for e+e- pairs production
 - possibly with γ produced by e⁺ stored beam on T
- Adiabatic Matching Device (AMD) for e⁺ collection
- Acceleration (linac / booster), injection

▶ <u>e⁺ ring:</u>

A 6.3 km 45 GeV storage ring with target T for muon production

From µ+µ- production to collider:

- ▶ Produced by the e⁺ beam on target **T** with $E(\mu)\approx 22 \text{GeV}, \gamma(\mu)\approx 200 \rightarrow \tau_{\text{LAB}}(\mu)\approx 500 \mu \text{s}$
- ▶ Accumulation Ring: 60m isochronous and high mom. accept. for μ recomb. ($\tau_{\mu}^{LAB} \sim 2500$ turns)
- Fast acceleration
- Muon collider

Accelerator Scheme

e ⁺ ring parameter	unit	value	
Circumference	km	6.3	
Energy	GeV	45	
bunches	#	100	
e+ bunch spacing = Trev (AR)	ns	200	
Beam current	mA	240	
$N(e^+)$ /bunch	#	$3 \cdot 10^{11}$	
U_0	GeV	0.51	
SR power	MW	120	
(also 28 km foreseen to be studied as an option) 8			

Accelerator Scheme

e ⁺ ring parameter	unit	value
Circumference	km	6.3
Energy	GeV	45
bunches	#	100
e+ bunch spacing = Trev (AR)	ns	200
Beam current	mA	240
$N(e^+)$ /bunch	#	3 · 1011
U_0	GeV	0.51
SR power	MW	120

Key topics for this scheme:

- → Low emittance and high mom. acc. 45GeV e+ ring
- \rightarrow O(100kW) class **target** in the e⁺ ring
- → High rate positron **source**
- → High mom. acc. µ accumulator rings

(also 28 km foreseen to be studied as an option)

8

6TeV µ collider draft Parameters (no lattice yet)

[NIM A 807 101-107 (2016)]

$\mu^{+}\mu^{-}$ rate = 9 10¹⁰ Hz, ϵ_{N} = 40 nm

if: LHeC like e⁺ source with 25% mom. accept. e⁺ ring and ϵ dominated by μ production

thanks to very small emittance (and lower beta*) **comparable luminosity** with lower N_{μ} /bunch (\rightarrow lower background)

> Of course, a design study is needed to have a reliable estimate of performances

		LEMC-6TeV
Parameter	Units	
LUMINOSITY/IP	cm ⁻² s ⁻¹	5.09E+34
Beam Energy	GeV	3000
Hourglass reduction factor		1.000
Muon mass	GeV	0.10566
Lifetime @ prod	sec	2.20E-06
Lifetime	sec	0.06
c*tau @ prod	m	658.00
c*tau	m	1.87E+07
1/tau	Hz	1.60E+01
Circumference	m	6000
Bending Field	Т	15
Bending radius	m	667
Magnetic rigidity	Τm	10000
Gamma Lorentz factor		28392.96
N turns before decay		3113.76
b _x @ IP	m	0.0002
b _y @ IP	m	0.0002
Beta ratio		1.0
Coupling (full current)	%	100
Normalised Emittance x	m	4.00E-08
Emittance x	m	1.41E-12
Emittance y	m	1.41E-12
Emittance ratio		1.0
Bunch length (zero	mm	0.1
Bunch length (full current)	mm	0.1
Beam current	mA	48
Revolution frequency	Hz	5.00E+04
Revolution period	S	2.00E-05
Number of bunches	#	1
N. Particle/bunch	#	6.00E+09
Number of IP	#	1.00
s _x @ IP	micron	1.68E-02
s _y @ IP	micron	1.68E-02
s _{x'} @ IP	rad	8.39E-05
s _{y'} @ IP	rad	8.39E-05

Radiological hazard due to neutrinos

Colin Johnosn, Gigi Rolandi and Marco Silari

muon rate: p on target option **3 10**¹³ μ/s e⁺ on target option **9 10**¹⁰ μ/s

Low emittance 45GeV e⁺ ring

• Circumference 6.3 km: 197 m x 32 cells (no injection section yet)

- Physical aperture=5 cm constant no errors
- Good agreement between MADX PTC / Accelerator Toolbox, both used for particle tracking in our studies

Parameter	Units	
Energy	GeV	45
Circumference	m	6300
Coupling(full current)	%	1
Emittance x	m	5.73×10^{-9}
Emittance y	m	5.73×10^{-11}
Bunch length	mm	3
Beam current	mA	240
RF frequency	MHz	500
RF voltage	GV	1.15
Harmonic number	#	10508
Number of bunches	#	100
N. particles/bunch	#	3.15×10^{11}
Synchrotron tune		0.068
Transverse damping time	turns	175
Longitudinal damping time	turns	87.5
Energy loss/turn	GeV	0.511
Momentum compaction		1.1×10^{-4}
RF acceptance	%	± 7.2
Energy spread	dE/E	1×10^{-3}
SR power	MW	120

Preliminary low-β IR for muon target insertion

- Further optimisations are underway:
 - Match the transverse minimum beam size with constraints of target thermo-mechanical stress
 - Match with other contributions to muon emittance (production, accumulation)
 - Dynamic and momentum aperture can be optimised

- 1. **Initial 6D** distribution from the equilibrium emittances
- 2. 6D e⁺ distribution **tracking up to the target** (AT and MAD-X PTC)
- 3. Tracking **through the target** (FLUKA/GEANT4)
- 4. Back to tracking code

TARGET

BEAM-LINE

Geant4/FLUK4

- 1. Initial 6D distribution from the equilibrium emittances
- AT MAD. X PTC 2. 6D e⁺ distribution tracking up to the target (AT and MAD-X PTC)
- 3. Tracking through the target (FLUKA/GEANT4)
- 4. Back to tracking code

13

TARGE

BEAM-LINE

Geant4/FLUK4

- 1. Initial 6D distribution from the equilibrium emittances
- AT/MAD.X PTC 2. 6D e⁺ distribution tracking up to the target (AT and MAD-X PTC)
- 3. Tracking through the target (FLUKA/GEANT4)
- 4. Back to tracking code
- **At each pass** through the Target the e⁺ beam:

TARGE

BEAM-LINE

Geant4/FLUK

- 1. Initial 6D distribution from the equilibrium emittances
- AT_MAD.X PTC 2. 6D e⁺ distribution tracking up to the target (AT and MAD-X PTC)
- 3. Tracking through the target (FLUKA/GEANT4)
- 4. Back to tracking code
- **At each pass** through the Target the e⁺ beam:
- Gets an **angular kick** due to MS **→** changes beam divergence and size \rightarrow emittance increase

- 1. **Initial 6D** distribution from the equilibrium emittances
- 2. 6D e⁺ distribution **tracking up to the target** (AT and MAD-X PTC)
- 3. Tracking through the target (FLUKA/GEANT4)
- 4. Back to tracking code

At each pass through the Target the e⁺ beam:

- Gets an **angular kick** due to MS → changes beam divergence and size → *emittance increase*
- Undergoes bremsstrahlung energy loss
 crucial role of *momentum acceptance* of e⁺ ring

TARGE

Geant4/FLUK

BEAM-LINE

13

- 1. Initial 6D distribution from the equilibrium emittances
- ATANAD. X PTC 2. 6D e⁺ distribution tracking up to the target (AT and MAD-X PTC)
- 3. Tracking through the target (FLUKA/GEANT4)
- 4. Back to tracking code

At each pass through the Target the e⁺ beam:

- Gets an **angular kick** due to MS → changes beam divergence and size -> emittance increase
- Undergoes bremsstrahlung energy loss → crucial role of *momentum acceptance* of e⁺ ring
- \oplus natural radiation damping

TARGE

BEAM-LINE

Geant4/FLUK

MAD-X PTC & GEANT4 6-D tracking simulation of e+ beam with **3 mm Be** target along

MAD-X PTC & GEANT4 6-D tracking simulation of e+ beam with **3 mm Be** target along

after target, before turn

Space 10000

0.02688

Mean x 0.8593

Mean y -0.0808

Std Dev x 10.53

Std Dev y 12.3

300

turn n 35

BEAM-LINE

MAD-X PTC & GEANT4 6-D tracking simulation of e+ beam with **3 mm Be** target along

Evolution of e⁺ beam size and divergence

bremsstrahlung and multiple scattering artificially separated by considering alternatively effects in longitudinal (dominated by **bremsstrahlung**) and transverse (dominated by **multiple scattering**) phase space due to target; in **blue** the combination of both effects (realistic target)

- Some bremsstrahlung contribution due to residual dispersion at target
- Multiple scattering contribution in line with expectation (nD= number of damping turns): $\sigma_{MS} = \frac{1}{2} \sqrt{n_D} \sigma'_{MS} \beta$
- 50 One pass contribution due to the target: $\sigma'_{MS} = 25 \,\mu rad$

Muons' emittance

$\varepsilon(\mu) = \varepsilon(e^+) \oplus \varepsilon(MS) \oplus \varepsilon(rad) \oplus \varepsilon(prod) \oplus \varepsilon(AR)$

 $\epsilon(e^+) = e^+$ emittance $\epsilon(MS) =$ multiple scattering contribution $\epsilon(rad) =$ energy loss (brem.) contribution $\epsilon(prod) =$ muon production contribution $\epsilon(AR) =$ accumulator ring contribution

would like all contributions of same size. knobs: β_x , β_y @target & target material β_x , β_y , D_x @ target & target material $E(e^+)$ & target thickness

AR optics & target

<u>Now</u>: ε(μ) dominated by ε(MS) ⊕ ε(rad) → lower D & βs @ target with beam spot at the limit of target survival

Also test **different materials**:

- Crystals in channeling: better ε(MS), ε(rad), ε(prod)
- Light liquid jet target: better ε(MS), ε(rad) and gain in lifetime & target thermo-mechanical characteristics

Test Beam

 Performed on the last week of July 2017, @CERN North Area (H4) founded by CSN1-INFN

18

- Use tertiary **45GeV e**⁺ beam, up to 5x10⁶ /spill with amorphous targets, to:
 - → measure *muon production* rate, cross section..
 - → measure muons kinematic properties: emittance...

Proposal of a beam test to study the feasibility of a low emittance muon beam using positrons on target

M. Antonelli¹, F. Anulli², E. Bagli³, F. Bedeschi⁴, A. Bertolin⁵, M. Biagini¹, M. Boscolo¹, R. Camattari³, G. Cibinetto³, F. Collamati¹, S. Dabagov¹, R. Di Nardo¹, M. Dreucci¹, V. Guidi³, S. Guiducci¹, D. Lucchesi⁵, A. Lupato⁵, A. Mazzolari³, M. Morandin⁵, L. Palumbo², M. Prest⁶, R. Rossin⁵, M. Rotondo¹, L. Sestini⁵, T. Spadaro¹, R. Tenchini⁴, G. Tonelli⁴, E.Vallazza⁶ and M. Zanetti⁵

¹Frascati National Laboratory, INFN ²University La Sapienza, Rome and INFN ³University of Ferrara and INFN ⁴University of Pisa and INFN ⁵University of Padua and INFN ⁶University of Insubria and INFN Expected σ_{eeµµ} < 1 µb, 5 order of magnitudes smaller than Bhabha!
→ a few muon pairs per spill

Summary

- A novel approach to muon production can allow the design of a <u>muon</u> <u>collider</u>:
 - Low emittance (
 no needing for cooling)
 - Low rate (
 + target load)
- First design of low emittance e⁺ ring with preliminary studies of beam dynamics
- Optimisation requires other issues to be preliminary addressed
 - Target material & characteristics
 - e⁺ accelerator complex
 - Muons accumulator rings design
- Preliminary studies are promising, we will continue to optimise all the parameters, lattices, targets, etc. in order to assess the ultimate performances and the feasibility of such a machine

Backup

Muon Accumulator Rings considerations

- Isochronous optics with <u>high momentum</u> <u>acceptance</u> (δ≥10%)
- Multiple pass through the target leads to emittance increase due to Multiple Scattering:
 - Beam divergence:
 - A factor 3 (2) increase in beam divergence is expected at 45 (50)GeV
 - Beam size:
 - Depends on optics, need low-β to suppress size increase
- This contributions can be strongly reduced with crystals in channeling

Target considerations

- The goal is to have a beam size as small as possible, but:
- Constraints for power removal (200kW) and temperature rise
 move target (for free with liquid jet)
 - → move target (for free with liquid jet)
 - → e+ bump every 1 munch muon accumulation
- Possibilities:
 - <u>Solid target</u>: simpler and better wrt temperature rise:
 - Be, C

[Kavin Ammigan 6th High Power Targetry Workshop]

- Be target: @HIRadMat safe operation with extracted beam from SPS, beam size 300 μ m, N=1.7x1011 p/bunch, up to 288 bunches in one shot
- <u>Liquid target</u>: better wrt power removal
 - Li, difficult to handle! lighter materials (H, He)
 - Lli jets examples from neutron production (Tokamak divertor). 200kW beam power removal seems feasible, minimum beam size to be understood

MAD-X PTC & GEANT4 6-D tracking simulation of e+ beam with **3 mm Be** target along the ring (not at IR center in this example)

Geant4 simulation

Geant4 simulation

