Development of the magnetic field mapping method for the precise spectroscopy of the muonium hyperfine splitting with 1.7 T magnetic field

> NUFACT 2017 (9/28/2017) @ Uppsala University Toya Tanaka (UTokyo) for MuSEUM collaboration

- Introduction
- Precision of the previous research
- Development of the magnetic field improvement

Outline

- Introduction
 - About MuSEUM collaboration
 - How to measure
 - Physical incentive muon g-2
 - Setup and roadmap of experiment
- Precision of the previous research
- Development of the magnetic field improvement

MuSEUM collaboration

<u>Muonium Spectroscopy Experiment Using Microwave</u>

Y. Fukao, Y. Ikedo, T.Ito, R. Kadono, N. Kawamura, A.Koda, K. M. Kojima, T. Mibe, Y. Miyake, K. Nagamine, T. Ogitsu, N. Saito, K. Sasaki, Y. Sato K. Shimomura, P. Strasser, A. Toyoda, K. Ueno, H. Yamaguchi, J-PRRC T. Yamazaki, A. Yamamoto, M. Yoshida

Y. Higashi, T. Higuchi, Y. Matsuda, T. Mizutani, S. Nishimura, S. Seo, M. Tajima, T. Tanaka, H. A. Torii, Y. Ueno, D. Yagi, H. Yasuda

H.M Shimizu M. Kitaguchi

K. Kawagoe, J.Tojo, T. Yoshioka, T. Suehara T. Yamanaka, M. Matama, T. Ito, Y. Tsutsumi

K. S. Tanaka

K. Kubo

H. linuma

D. Kawall

S. Choi

Goal of MuSEUM collaboration

- High precision measurement of muonium hyperfine structure (MuHFS) in Zero field & High field
- Stringent test of bound state QED by comparing to the theoretical calculation

 $\Delta \nu_{\rm HFS}(theo) = 4\ 463\ 302\ 891(272) {\rm Hz}\ (63 {\rm ppb})$

D. Nomura and T. Teubner, Nucl. Phys. B 867, 236 (2013).

 $\Delta \nu_{\rm HFS}(exp) = 4\ 463\ 302\ 765(53) {\rm Hz}\ (12 {\rm ppb})$

W. Liu et al., Phys. Rev. Lett. 82, 711 (1999).

• Relative uncertainty of 1.7 T measurement at LAMPF MuHFS : 12ppb, μ_{μ}/μ_{p} and m_{μ}/m_{e} :120ppb

W. Liu et al., Phys. Rev. Lett. 82, 711 (1999).

• MuSEUM's goal : improve the precision by a factor of 10 MuHFS : ~1ppb, μ_{μ}/μ_{p} and m_{μ}/m_{e} :10ppb

MuHFS measurement in ZF & HF

• In the limit of a strong magnetic field (x>>1, x ~ 10.7 with 1.7 T)

$$\nu_{12} + \nu_{34} = \Delta \nu_{\text{HFS}} \qquad \frac{\mu_{\mu}}{\mu_{\text{p}}} = \frac{1}{2} \frac{(\nu_{34} - \nu_{12})}{\nu_{\text{p}}} \frac{g_{\mu}}{g'_{\mu}} \qquad \frac{m_{\mu}}{m_{e}} = \frac{g_{\mu}}{2} \frac{\mu_{\text{p}}}{\mu_{\mu}} \frac{\mu_{\text{p}}}{\mu_{\text{p}}} \frac{\mu_{\text{p}}}{\mu_{\text{p}}}$$

Related physics - muon g-2

• $\sim 3\sigma$ discrepancy between theory and experiment

 $a_{\mu}(exp) - a_{\mu}(th) = 250(89) \times 10^{-11} \, \mathrm{(from \, COData \, 2014)}$

• μ_{μ}/μ_{p} : essential parameter for muon g-2 experiment

$$a_{\mu}(exp) = \frac{(g-2)_{\mu}}{2} = \underbrace{\frac{R}{\lambda - R}}_{\text{G.W. Bennett et al., Phys. Rev. D 73 072003 (2006).}}_{\text{G.W. Bennett et al., Phys. Rev. D 73 072003 (2006).}} \\ \lambda = \frac{\mu_{\mu}}{\mu_{p}} \left(\frac{30 \text{ppb}}{100 \text{pb}} \right)_{\text{W. Liu et al., Phys. Rev. Lett. 82, 711 (1999).}}$$

D. E. Groom *et al.*, Eur. Phys. J. C **15**, 1 (2000).

- R: Planning 140ppb measurement at J-PARC and Fermilab M. Otani, JPS Conf. Proc. 8, 025008 (2015). J. Grange Fermilab g-2 experiment technical design report (2015).
- λ : 30ppb (indirect) -> **direct** 10ppb measurement

Setup of high field MuHFS measurement

superconducting magnet (1.7 T)

RF cavity resonant to v_{12} with TM110 mode & v_{34} with TM210 mode

Road map of Experiment

- Zero field measurement @MLF D2-line ongoing
 - 2016 Jun. 12-14 (60h) 1st measurement
 - 2017 Feb. 1-4 (96h) 2nd measurement
 - 2017 Jun. 3rd measurement
 - Next beam time at 2018 spring
- High field measurement @MLF H-line
 - Will be ready in 2018 Autumn

Outline

- Introduction
- Precision of the previous research
 - List of uncertainties
 - Improvement of statistics
 - Improvement of systematics B-field inhomogeneity
- Development of the magnetic field improvement

W. Liu et al., Phys. Rev. Lett. 82, 711 (1999).

- Mainly limited by statistics installation of H-Line @ J-PARC MLF
- Systematic uncertainty caused by B-field should be improved

High statistics by using pulsed muon beam

Experiment at LAMPF

- DC beam @ LAMPF
- Beam chopped for "old muonium" method
- Data taking : 6 weeks
- Total : ~10¹³ muons

MuSEUM experiment

- Pulsed beam @ J-PARC MLF H-line
- All muon can be used
- Total : ~10¹⁵ muons
 (~100 days data taking)
- Improve to ~1ppb (MuHFS)
 ~10ppb (μ_μ / μ_p)

B-field of LAMPF experiment

- B-field evaluated with
- 1. Magnet :1ppm in 10 cm diameter sphere volume
- 2. B-field mapping : 0.7ppm peak-to-peak homogeneity in cylindrical surface

Magnetic field map over r=3.5 cm cylindrical surface. z=0 cm corresponds to the cavity center.(taken from W. Liu's PhD thesis)

Systematic uncertainty in B-field is mainly caused by
 Inhomogeneity of B-field -> magnet spec & shimming
 Calibration of NMR probes -> high precision probes

Required B-field at MuSEUM

Superconducting magnet (1.7 T)

 Required ~1ppm homogeneity of 1.7 T in the spheroid muonium formation area (z= 300 mm, r=100 mm)

Outline

- Introduction
- Precision of the previous research
- Development of the magnetic field improvement
 - Highly homogeneous superconducting magnet
 - High precision NMR probes on progress

B-field improvement - magnet

Solenoid superconducting magnet for MuSEUM
 Maximum 2.9 T, used in 1.7 T

Requirements
Field homogeneity <1ppm
Stability <0.1ppm/h

Superconducting MRI magnet (Hitachi)

Long term stability test (2015/3/30 - 2015/4/9)
64Hz drift per 9 days = 3ppb/h stability

B-field improvement - shimming

- Shimming by placing iron plates (5 & 25um thickness) in
 24 pockets* 24 trays = 576 pockets inside the magnet
- Optimized homogeneity to 0.80ppm of 1.7 T in target area (mapped by single NMR probe)

Thin and thick iron plates for shimming (W 40 mm, D 30 mm, t 5 or 25µm)

Shim tray

NMR probes for MuSEUM experiment

- Stability Online monitor by fixed NMR probes
- Homogeneity Measurement by the multi channel field mapping probe

Concept of field mapping probe

- Concept : Want to suppress the effect of B-field drift at measurement
- Drift in LAMPF experiment
 - long term drift ~ 10ppb/h
 - short term drift ~ 100ppb/h

- Fast field mapping enables B-field measurement with low drift
- Design : 24ch NMR probes on half-oval plate to scan the surface

Prototype of field mapping probe

Timeline of development

- 1. <u>R&D of Single channel NMR probe in progress</u>
 - Prototype design for fixed & field mapping probe
 - The effect by the circuit element itself is crucial
- 2. Fixed probe, Field mapping probe design
- 3. Installation to HF MuHFS measurement

Test of the standard probe

NMR probe cross calibration test with 1.45 T
 @Argonne national laboratory, USA

Test of the standard probe

- CW(continuous wave)-NMR probe was used
- B-field shift effect caused by the probe material itself is evaluated

Results of the material test

	Shift (ppb)	Shift (Hz)
All materials	+70.6 ± 2.5	+4.36 ± 0.15
Circuit boad	+96.4 ± 0.4	+5.95 ± 0.02

(Analyzed by S. Seo)

• NMR probe material should be tested in the circuit element level

Development status - circuit element test

• Each circuit element was tested by placing in the 0.34 T permanent magnet and measuring the B-field shift (1 uT resolution)

material	shift (uT)	shift / 0.34 T (ppm)
circuit	-79 ~ -124	-231 ~ -365
silicon J-FET (2SK19)	-13	-38
electrolytic capacitor (A1504)	-37	-108
operational amplifier (LMC662) with socket	-3	-8.7
commercial ceramic capacitor	-45	-131
Voltronics NMAP40HV Trimmer capacitor	<1	< 3

Can know which element should be excluded!

Development status - final circuit design

- Suggestions
- 1. select non-magnetic element
- Reliability will be tested with our magnet

non magnetic trimmer capacitor (Voltronics NMAP40HV)

- 2. put the element away
- stray capacitance shifts the resonance frequency

 Final design should be considered by the less magnetized material and circuit characteristics

- High field MuHFS measurement is a good probe to test the bound state QED and also μ_{μ}/μ_{p} and m_{μ}/m_{e} can be measured. For improvement, more statistics and high homogeneity of magnetic field are required.
- The spec magnet fulfills the requirement of the MuSEUM experiment.
- To develop high precision NMR probes for high precision B-field measurement, R&D is in progress, starting from development of single channel probes.

Appendix

lambda used at g-2 measurement

Magnetic moment ratio values used at BNL(Brookhaven national laboratory) result was derived from Δv_{HFS} results by LAMPF (12ppb) applying to

$$\Delta \nu_{\rm HFS} = \frac{16}{3} \alpha^2 c R_\infty \frac{m_{\rm e}}{m_\mu} [1 + \frac{m_{\rm e}}{m_\mu}]^{-3} + \text{corrections}$$

and the magnetic moment was calculated by the mass ratio as

$$\frac{\mu_{\mu}}{\mu_{\rm p}} = \frac{g_{\mu}}{2} \frac{m_{\rm e}}{m_{\mu}} \frac{\mu_B^{\rm e}}{\mu_{\rm p}}$$

which is called the **indirect** determination. This calculation assumes the SM of the correction terms.

old muonium method

Probe used at LAMPF experiment

- proton NMR measured by pulsed NMR magnetometer
- 30ppb precision
- 8 fixed probe outside the cavity & movable plunging probe for monitoring 5 times/sec - used solution of CuSO₄ or NiCl₂ for sample