Hidden sector searches at NA62 and SHiP

Philippe Mermod, on behalf of the SHiP Collaboration NUFACT, Uppsala, 29 September 2017

No new physics so far at the LHC even at the highest energies

The SM is a triumph up to the TeV scale

No new physics so far at the LHC even at the highest energies

The SM is a triumph up to the TeV scale

T2K might be seeing **CP violation in the neutrino sector**

→ Can reasonably expect 3σ level confirmation within 10 years

No new physics so far at the LHC even at the highest energies

The SM is a triumph up to the TeV scale

T2K might be seeing CP violation in the neutrino sector

→ Can reasonably expect 3σ level confirmation within 10 years

No dark-matter interactions seen on Earth

Renewed interest in light dark matter scenarios

No new physics so far at the LHC even at the highest energies

The SM is a triumph up to the TeV scale

T2K might be seeing CP violation in the neutrino sector

→ Can reasonably expect 3σ level confirmation within 10 years

No dark-matter interactions seen on Earth

Renewed interest in light dark matter scenarios

Still 3 missing pieces to the SM

Heavy neutral lepton (HNL)

neutrino masses through seesaw

very long lifetime & warm → dark matter

baryon asymmetry (BAU) through leptogenesis

NUFACT17, Philippe Mermod

Probing hidden sectors with very small couplings to SM
High fluxes
Displaced decays

Searches with proton beams

• masses up to 0.45 GeV probed through pion and kaon decays

K+

- → **PS191** Phys. Lett. B 203, 332 (1988)
- NA62 in beam mode (production)
- masses up to 2 GeV probed through charmed meson decays
 - → CHARM Phys. Lett. B 166, 473 (1986)
 - → **NuTeV** Phys. Rev. Lett. 83, 4943 (1999)
 - NA62 in dump mode (production and decay)

μŤ

νu

The NA62 experiment

JINST 12, P05025 (2017)

Normal operation

- 400 GeV protons on target \rightarrow collimated 75 GeV K⁺ beam
- Tag K⁺ in the beam
- Vacuum vessel as decay volume
- Reconstruct K⁺ decay kinematics with high precision

NUFACT17, Philippe Mermod

N search at NA62 in beam mode

- Analysed datasets
 - 2007: 60 millions K⁺, muon channel
 - 2015: 300 millions K⁺, electron channel
- Look for excess in missing mass spectrum
- Probe couplings $U^2 \sim 10^{-7}$ for $m_N \sim 0.2 0.45$ GeV

12

N search at NA62 in beam mode

- Analysed datasets
 - 2007: 60 millions K⁺, muon channel
 - 2015: 300 millions K⁺, electron channel
- Look for excess in missing mass spectrum
- Probe couplings $U^2 \sim 10^{-7}$ for $m_N \sim 0.2 0.45$ GeV

 μ^+

N_{2,3}

 v_{μ}

¥

K+

N search at NA62 in dump mode

- Target removed, beam dumped directly on Cu collimator
- Long-lived neutral particle decays in vacuum vessel
- Goal: integrate ~10¹⁸ pot in dump mode
 - ~3 months of dedicated data taking in 2021–2023
- Test run in dump mode (2.10¹⁵ pot) used to study backgrounds
 - Considered opposite-charge track vertices within 1 ns window
 - Background events do not point to the proton interaction and can be further rejected by adding an upstream veto detector

N _{2,3}

 $v_{\rm H}$

μ

π

Search for Hidden Particles (SHiP)

- Proposed facility: 400 GeV protons from the CERN SPS
 - New beam line and target complex
 - − Aim at 2·10²⁰ pot in 5 years (\rightarrow ~ 5·10¹⁶ vs from charm decays)
- Collaboration of 250 members from 46 institutes
- Technical proposal arXiv:1504.04956 (2015) Physics paper Rep. Prog. Phys. 79 (2016)

Designed for large acceptance and zero backgrounds

Designed for large acceptance and zero backgrounds

- Vertices from neutrinos
 - Stop pions and kaons before they decay
 - Evacuate the vessel
 - Reconstructed vertex inside the vessel

Decay vessel Emulsion detector Active muon shield Target and hadron dump 1500 NUFACT17, Philippe Mermod 17

Tracker

Particle ID

Spectrometer

Designed for large acceptance and zero backgrounds

Designed for large acceptance and zero backgrounds

- Vertices from neutrinos
- Muon crossings
- Vertices from K⁰
 - Upstream veto tagger
 - Reconstructed parent origin

Decay vessel Veto tagger Emulsion detector Active muon shield Target and hadron dump 1500 NUFACT17, Philippe Mermod 19

Tracker

Spectrometer

Particle ID

Designed for large acceptance and zero backgrounds

- Vertices from neutrinos
- Muon crossings
- Vertices from K⁰
- Wide physics programme
 - Variety of decay modes to probe hidden sectors Particle ID

Tracker

Spectrometer

- Tau-neutrino physics

Example of typical SHiP event selection

Start with two high-quality tracks in spectrometer

Typically 6% probability once N decays inside the vessel

For these require:

- Crossing within small distance inside decay volume
- One muon and one pion
- Matched hits in timing detector within narow time window
- No matched hit in upstream and surround veto taggers
- Reconstructed parent pointing to target
- ~70% efficiency for $N \to \mu \pi$ once both tracks are reconstructed
- < 0.1 background events remaining

N at CERN in a 10-year timesecale

Fig from arXiv:1704.08635

NUFACT17, Philippe Mermod

NUFACT17, Philippe Mermod

Dark photon

hidden sector charged under U(1)'

Dark photon (γ^{D}) Hidden / heavy photon Mirror photon Dark Z (Z^{D}) U-boson, etc.

 $\epsilon \sim 10^{-6} - 10^{-2}$

 $m_{A'} \sim \text{MeV} - \text{GeV}$

- g-2, dark matter, positron excess, parity...
- Production via kinetic mixing with the photon
 - Coupling to charged particles suppressed by ϵ
- Decay to fermion pairs
 - Search for resonances

Dark photons at NA62 in beam mode

Dark photons at NA62 in dump mode and at SHiP

 10^{-2}

 10^{-3}

SINDRUM

HADES

BaBat

APEX A1

KLOE

WASA

E774

- Production dominated by
 - $p \rightarrow p\gamma$
 - $\pi^{o} \rightarrow \gamma \gamma$
 - $-\eta \rightarrow \gamma \gamma$
- Reconstruct e⁺e⁻ and μ⁺μ⁻ vertex from A' decay

Summary and outlook

In the absence of new physics at the TeV scale, searches for **light new physics** are gathering momentum

- Possibly key to explaining dark matter, baryon asymmetry, neutrino masses...
- Probing low couplings to the SM, which means:
 - High-intensity beams
 - Long lifetimes \rightarrow displaced decay signatures
- Complementary approaches with high-intensity beams:
 - Colliders LHC, HL-LHC
 - Fixed target NA62, SHiP
- Wide experimental programme for many years to come

SHiP – tau-neutrino physics

SIGNAL

ν

BACKGROUND

- An OPERA-like tau-neutrino emulsion detector
- Current status of tauneutrino measurements:
 - DONUT observed 9 events (from charm),
 OPERA 5 events (from oscillations)
- SHiP can increase by 200 the current tau neutrino sample, discover anti-tauneutrinos, measure structure functions and constrain strange PDFs (with v_{μ})

SHiP – controlling the fluxes

Charm – no data available for protons at ~400 GeV Need to validate cascade production \rightarrow proposal to perform direct measurements with dedicated experiment in 2018

- Instrumented replica of the SHiP target
- Inclusive charm production d²σ/dEdθ measurement important for HNL signal acceptance estimate
- Measurement of muon flux at high energies and large angles important for muon shield design

