DUNE sensitivities to the mixing between sterile and tau neutrinos

Based on arXiv:1707.05348

David Vanegas Forero

IFGW - UNICAMP

NUFACT September 27th, 2017

In coll. with: Pilar Coloma & Stephen Parke

Introduction

2 Economical framework, 3+1

3 Simulation details

4 Results

Introduction

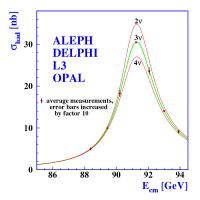
- 2 Economical framework, 3+1
- 3 Simulation details

4 Results

5 Summary and Conclusions

Three and only three active neutrinos: $N_{ m v}=$ 2.984 \pm 0.008

Phys.Rept. 427 (2006) 257-454 arxiv:hep-ex/0509008



- Extra flavor neutrino states have to be 'sterile'!
- Light sterile neutrino(s) with $\Delta m^2 \sim 1 \text{eV}^2$ are motivated by SBL anomalies.
- One economical extension is to introduce one extra sterile neutrino, 3+1 framework.

Besides SBL experiments, sterile oscillation can be tested using the ν_{μ} disappearance channel at the far detector (FD) of accelerator experiments:

- MINOS: P. Adamson et. al. arxiv:1104.3922 P. Adamson et. al. arxiv:1607.01176
 - ▶ For $m_4 = m_1$: Limits $\theta_{34} < 26^{\circ}(37^{\circ})$ at the 90% C.L. For $m_4 \gg m_1$: Limits $\theta_{24} < 7^{\circ}(8^{\circ})$ and $\theta_{34} < 26^{\circ}(37^{\circ})$ at the 90% C.L.
 - ► For $\Delta m_{41}^2 = 0.5 \text{ eV}^2$: Limits $\sin^2 \theta_{24} < 0.016$) (assuming $|U_{e4}|^2 = 0$ [*]), also $\sin^2 \theta_{34} < 0.20$ (assuming $c_{14}^2 = c_{24}^2 = 1$)...at the 90% C.L.
 - NOvA:

P. Adamson et. al. arxiv:1706.04592

For Δm²₄₁ = 0.5 eV²: Limits θ₂₄ < 20.8° and θ₃₄ < 31.2° or |U_{μ4}|² < 0.126 and |U_{τ4}|² < 0.268 (assuming c²₁₄ = 1) at the 90% C.L.

Besides SBL experiments, sterile oscillation can be tested using the ν_{μ} disappearance channel at the far detector (FD) of accelerator experiments:

- MINOS: P. Adamson et. al. arxiv:1104.3922 P. Adamson et. al. arxiv:1607.01176
 - ► For $m_4 = m_1$: Limits $\theta_{34} < 26^{\circ}(37^{\circ})$ at the 90% C.L. For $m_4 \gg m_1$: Limits $\theta_{24} < 7^{\circ}(8^{\circ})$ and $\theta_{34} < 26^{\circ}(37^{\circ})$ at the 90% C.L.
 - ► For $\Delta m_{41}^2 = 0.5 \text{ eV}^2$: Limits $\sin^2 \theta_{24} < 0.016$) (assuming $|U_{e4}|^2 = 0$ [*]), also $\sin^2 \theta_{34} < 0.20$ (assuming $c_{14}^2 = c_{24}^2 = 1$)...at the 90% C.L.
 - NOvA:

P. Adamson et. al. arxiv:1706.04592

For Δm²₄₁ = 0.5 eV²: Limits θ₂₄ < 20.8° and θ₃₄ < 31.2° or |U_{μ4}|² < 0.126 and |U_{τ4}|² < 0.268 (assuming c²₁₄ = 1) at the 90% C.L.

An important experimental constraint comes from atmospheric neutrinos at Super-Kamiokande: K. Abe et. al. arxiv:1410.2008

• No evidence of sterile oscillations is seen $\rightarrow |U_{\mu4}|^2 < 0.041$ and $|U_{\tau4}|^2 < 0.18$ for $\Delta m^2 > 0.1$ at the 90% C.L (Assuming $|U_{e4}|^2 = 0$).

[*] $|U_{e4}|^2 < 0.041$ at 90% C.L, from 'solar+KamLAND' plus 'Daya Bay+RENO', for $\Delta m^2 \sim 1 \text{ eV}^2$. A. Palazzo arxiv:1302.1102

Besides SBL experiments, sterile oscillation can be tested using the ν_{μ} disappearance channel at the far detector (FD) of accelerator experiments:

- MINOS: P. Adamson et. al. arxiv:1104.3922 P. Adamson et. al. arxiv:1607.01176
 - ▶ For $m_4 = m_1$: Limits $\theta_{34} < 26^{\circ}(37^{\circ})$ at the 90% C.L. For $m_4 \gg m_1$: Limits $\theta_{24} < 7^{\circ}(8^{\circ})$ and $\theta_{34} < 26^{\circ}(37^{\circ})$ at the 90% C.L.
 - ► For $\Delta m_{41}^2 = 0.5 \text{ eV}^2$: Limits $\sin^2 \theta_{24} < 0.016$) (assuming $|U_{e4}|^2 = 0$ [*]), also $\sin^2 \theta_{34} < 0.20$ (assuming $c_{14}^2 = c_{24}^2 = 1$)...at the 90% C.L.
 - NOvA:

P. Adamson et. al. arxiv:1706.04592

For Δm²₄₁ = 0.5 eV²: Limits θ₂₄ < 20.8° and θ₃₄ < 31.2° or |U_{μ4}|² < 0.126 and |U_{τ4}|² < 0.268 (assuming c²₁₄ = 1) at the 90% C.L.

An important experimental constraint comes from atmospheric neutrinos at Super-Kamiokande: K. Abe et. al. arxiv:1410.2008

• No evidence of sterile oscillations is seen $\rightarrow |U_{\mu4}|^2 < 0.041$ and $|U_{\tau4}|^2 < 0.18$ for $\Delta m^2 > 0.1$ at the 90% C.L (Assuming $|U_{e4}|^2 = 0$).

[*] $|U_{e4}|^2 < 0.041$ at 90% C.L, from 'solar+KamLAND' plus 'Daya Bay+RENO', for $\Delta m^2 \sim 1 \text{ eV}^2$. A. Palazzo arxiv:1302.1102

Can we improve our knowledge of the ν_{τ} fraction of a sterile state?

Introduction

2 Economical framework, 3+1

3 Simulation details

4 Results

5 Summary and Conclusions

Generalities

3+1 sterile neutrino framework

Flavor and mass eigenstates are connected via:

 $u_{\alpha} = U_{\alpha i}^{*} \nu_{i}, \text{ with } \alpha = e, \mu, \tau, s$

where we have parametrized U in this arbitrary form:

 $U = O_{34} V_{24} V_{14} O_{23} V_{13} O_{12},$

where O_{ij} (V_{ij}) denotes a real (complex) rotation.

Assuming we can neglect the solar contribution to the (vacuum) sterile oscillation probability, or $\Delta_{21} \ll \Delta_{31}$, one obtains:

$$\begin{split} \mathcal{P}_{\mu s} &\equiv \mathcal{P}(\nu_{\mu} \rightarrow \nu_{s}) = 4 |U_{\mu 4}|^{2} |U_{s 4}|^{2} \sin^{2} \Delta_{41} + 4 |U_{\mu 3}|^{2} |U_{s 3}|^{2} \sin^{2} \Delta_{31} \\ &+ 8 \, \text{Re} \left[U_{\mu 4}^{*} U_{s 4} U_{\mu 3} U_{s 3}^{*} \right] \cos \Delta_{43} \sin \Delta_{41} \sin \Delta_{31} \\ &+ 8 \, \text{Im} \left[U_{\mu 4}^{*} U_{s 4} U_{\mu 3} U_{s 3}^{*} \right] \sin \Delta_{43} \sin \Delta_{41} \sin \Delta_{31}, \end{split}$$

How many new parameters we have included to the 3-flavor case?

Generalities

Degrees of freedom, working assumptions

General degrees of freedom:

- θ_{i4} new mixing angles.
- Three new splittings $\Delta m_{4k}^2 \equiv m_4^2 m_k^2$, with k = 1, 2, 3.
- Two new CP-violating phases: δ_{14} and δ_{24} .

working assumptions:

• For simplicity, and without losing generality, from now on we consider $\theta_{14} = 0$.

This assumption implies only one extra phase is physical, δ_{24} .

At the end, we are left with: θ_{34} , θ_{24} , δ_{24} and Δ_{41} extra parameters!

Generalities

Degrees of freedom, working assumptions

General degrees of freedom:

- θ_{i4} new mixing angles.
- Three new splittings $\Delta m_{4k}^2 \equiv m_4^2 m_k^2$, with k = 1, 2, 3.
- Two new CP-violating phases: δ_{14} and δ_{24} .

working assumptions:

• For simplicity, and without losing generality, from now on we consider $\theta_{14} = 0$.

This assumption implies only one extra phase is physical, δ_{24} .

At the end, we are left with: θ_{34} , θ_{24} , δ_{24} and Δ_{41} extra parameters!

From now we consider the sterile appearance channel, $P(\nu_{\mu} \rightarrow \nu_{s})$

Limiting cases

$$\begin{split} \mathcal{P}_{\mu s} &\equiv \mathcal{P}(\nu_{\mu} \to \nu_{s}) = 4 |U_{\mu 4}|^{2} |U_{s 4}|^{2} \sin^{2} \Delta_{41} + 4 |U_{\mu 3}|^{2} |U_{s 3}|^{2} \sin^{2} \Delta_{31} \\ &+ 8 \operatorname{Re} \left[U_{\mu 4}^{*} U_{s 4} U_{\mu 3} U_{s 3}^{*} \right] \cos \Delta_{43} \sin \Delta_{41} \sin \Delta_{31} \\ &+ 8 \operatorname{Im} \left[U_{\mu 4}^{*} U_{s 4} U_{\mu 3} U_{s 3}^{*} \right] \sin \Delta_{43} \sin \Delta_{41} \sin \Delta_{31}, \end{split}$$

Depending on the Δm_{41}^2 value respect to Δm_{31}^2 , one have three 'oscillation regimes':

• $\Delta_{41} \ll \Delta_{31}$, sterile oscillation has not developed at FD

$$P_{\mu s} = |4|U_{\mu 3}|^2 |U_{s 3}|^2 \sin^2 \Delta_{31}$$

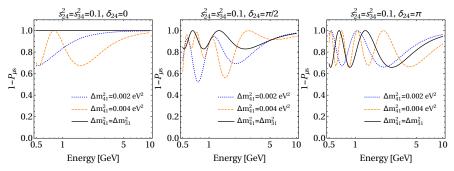
• $\Delta_{41} \approx \Delta_{31}$, sterile matches the 3-flavor oscillation phase:

$$P_{\mu s} = 4 \left| U_{\mu 4}^* U_{s4} + U_{\mu 3}^* U_{s3} \right|^2 \sin^2 \Delta_{31}$$

• $\Delta_{41} \gg \Delta_{31}$, sterile oscillations already averaged-out at the FD:

$$\begin{aligned} \mathcal{P}_{\mu s} &= 2 \left| U_{\mu 4} \right|^2 \left| U_{s 4} \right|^2 + 4 \left\{ \left| U_{\mu 3} \right|^2 \left| U_{s 3} \right|^2 + \text{Re}[U_{\mu 4}^* U_{s 4} U_{\mu 3} U_{s 3}^*] \right\} \sin^2 \Delta_{31} \\ &+ 2 \left[\text{Im}[U_{\mu 4}^* U_{s 4} U_{\mu 3} U_{s 3}^*] \sin 2 \Delta_{31} \right] \end{aligned}$$

δ_{24} effect at the probability level



- When Δ₄₁ ≈ Δ₃₁, and for δ₂₄ = 0, a cancellation of the oscillation amplitud happens for certain values of θ₂₄ and θ₃₄: |U^{*}_{μ4}U_{s4} + U^{*}_{μ3}U_{s3}|² ≈ 0
- When Δ₄₁ ≪ Δ₃₁, and for δ₂₄ = π, a cancellation of the oscillation amplitud happens for certain values of θ₂₄ and θ₃₄: |U_{s3}|² ≈ 0

Cancellations will impact our analysis results, as it will be shown later.

Introduction

2 Economical framework, 3+1

3 Simulation details

4 Results

Simulation and analysis strategy

- We assume that no sterile oscillations have taken place at the ND.
- Then one should look for a depletion in the number of NC events at the FD with respect to the (3-flavor) prediction.
- Signal:

$$\begin{split} \mathsf{N}_{\mathsf{NC}} &= \mathsf{N}_{\mathsf{NC}}^{e} + \mathsf{N}_{\mathsf{NC}}^{\mu} + \mathsf{N}_{\mathsf{NC}}^{\tau} \\ &= \phi_{\nu_{\mu}} \, \sigma_{\nu}^{\mathsf{NC}} \left\{ \mathsf{P}(\nu_{\mu} \rightarrow \nu_{e}) + \mathsf{P}(\nu_{\mu} \rightarrow \nu_{\mu}) + \mathsf{P}(\nu_{\mu} \rightarrow \nu_{\tau}) \right\} \\ &= \phi_{\nu_{\mu}} \, \sigma_{\nu}^{\mathsf{NC}} \left\{ 1 - \mathsf{P}(\nu_{\mu} \rightarrow \nu_{s}) \right\} \,, \end{split}$$

• Background:

 $\nu_{e,\mu,\tau}$ -CC events potentially misidentified as NC events.

Therefore, 'good' discrimination power between neutral-current and charged-current events is required!

DUNE neutrino oscillation experiment is therefore a good place to look for the 'depletion' of NC events at FD.

Simulation and analysis strategy

- We assume that no sterile oscillations have taken place at the ND.
- Then one should look for a depletion in the number of NC events at the FD with respect to the (3-flavor) prediction.
- Signal:

$$\begin{split} \mathsf{N}_{\mathsf{NC}} &= \mathsf{N}_{\mathsf{NC}}^{e} + \mathsf{N}_{\mathsf{NC}}^{\mu} + \mathsf{N}_{\mathsf{NC}}^{\tau} \\ &= \phi_{\nu_{\mu}} \, \sigma_{\nu}^{\mathsf{NC}} \left\{ \mathsf{P}(\nu_{\mu} \rightarrow \nu_{e}) + \mathsf{P}(\nu_{\mu} \rightarrow \nu_{\mu}) + \mathsf{P}(\nu_{\mu} \rightarrow \nu_{\tau}) \right\} \\ &= \phi_{\nu_{\mu}} \, \sigma_{\nu}^{\mathsf{NC}} \left\{ 1 - \mathsf{P}(\nu_{\mu} \rightarrow \nu_{s}) \right\} \,, \end{split}$$

• Background:

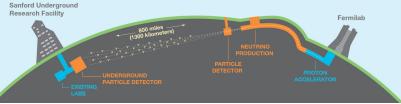
 $\nu_{e,\mu,\tau}$ -CC events potentially misidentified as NC events.

Therefore, 'good' discrimination power between neutral-current and charged-current events is required!

DUNE neutrino oscillation experiment is therefore a good place to look for the 'depletion' of NC events at FD.

Matter effects were included in the sensitivity analysis!

Simulation and analysis strategy



- Energy reconstruction:
 - Signal: Migration matrix accounts for the correspondence between a given incident neutrino energy and the amount of visible energy deposited in the detector.
 V. De Romeri et. al. arxiv:1607.00293
 - BG: Gaussian energy resolution function, following the DUNE CDR values.

T. Alion et. al. arxiv:1606.09550

- Efficiencies:
 - Signal: A flat 90% efficiency was assumed as a function of E_{rec}.
 - ▶ BG: Rejection efficiency at the level of 90%, except for taus (irreducible bg).
- Systematical errors (implemented as nuisance parameters ζ):
 - Signal: Total normalization (norm) and shape uncertainty.
 - BG: Total normalization.

 ζ parameters are taken to be uncorrelated between ν and $\overline{\nu}$ channels as well as between the different contributions to the signal and/or background events.

Introduction

- 2 Economical framework, 3+1
- 3 Simulation details

First analysis, constraining the tau-sterile mixing

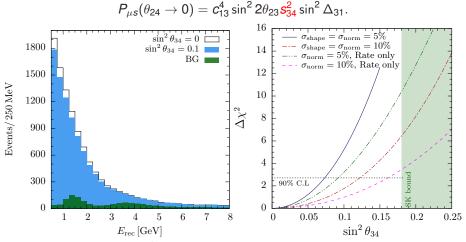
Let us consider the simpler case of having only a non-trivial tau-sterile mixing:

$$P_{\mu s}(\theta_{24} \to 0) = c_{13}^4 \sin^2 2\theta_{23} s_{34}^2 \sin^2 \Delta_{31}.$$

 $\theta_{24} \rightarrow 0$ case: $P_{\mu s}$ is Δm_{41}^2 -independent \rightarrow no effect on the ND.

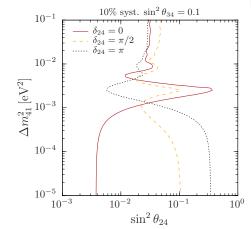
First analysis, constraining the tau-sterile mixing

Let us consider the simpler case of having only a non-trivial tau-sterile mixing:



 $\theta_{24} \rightarrow 0$ case: $P_{\mu s}$ is Δm_{41}^2 -independent \rightarrow no effect on the ND. At FD the oscillation is driven by the atmospheric scale. So, a clean constraint on θ_{34} can be obtained!

Second analysis, rejecting the three-family hypothesis



Three oscillation regimes:

• $\Delta_{41} \gg \Delta_{31}$

$$\Delta_{41} \approx \Delta_{31}$$

 $P_{\mu s} = 4 \left| U_{\mu 4}^* U_{s4} + U_{\mu 3}^* U_{s3} \right|^2 \sin^2 \Delta_{31}$

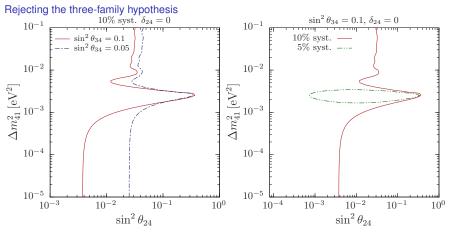
Cancellations: For $\frac{\delta_{24}}{\left|U_{\mu4}^{*}U_{s4}+U_{\mu3}^{*}U_{s3}\right|^{2}} \approx 0$

• $\Delta_{41} \ll \Delta_{31}$

$$P_{\mu s} = 4 |U_{\mu 3}|^2 |U_{s 3}|^2 \sin^2 \Delta_{31}$$

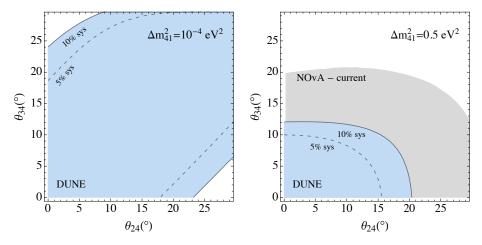
Cancellations: For $\delta_{24} = \pi$, when $|U_{s3}|^2 \approx 0$

Second analysis



- Left panel: In the region where $\Delta m_{41}^2 \ll \Delta m_{31}^2$ there is a strong dependence of the results with the true value of θ_{34} .
- Right panel: For 5% syst. a successful rejection of the three-family hypothesis in practically all the parameter space (except in the region $\Delta_{41} \approx \Delta_{31}$) is obtained.

Third analysis, testing the 4-flavor hypothesis



- Left panel: In the $\Delta_{41} \ll \Delta_{31}$ regime, $P_{\mu s} = 4|U_{\mu 3}|^2|U_{s3}|^2\sin^2\Delta_{31}$ Cancellations: For $\delta_{24} = \pi$, when $|U_{s3}|^2 \approx 0$
- Right panel: In the $\Delta_{41} \gg \Delta_{31}$ regime, almost no δ_{24} impact, and therefore no cancellations.

Introduction

- 2 Economical framework, 3+1
- 3 Simulation details

4 Results

Conclusions

- We have derived the ν_s app. oscillation prob in vacuum and studied it in different regimes focusing in CP-violating effects due to the new phases, and we found that for some of its values, and in a given oscillation regime, cancellations in the osc. amplitude can be produced.
- Taking advantage of the excellent capabilities of liquid Argon to discriminate between CC and NC events, we have perform three different studies considering sterile neutrino oscillations (in the 3+1 scheme) at the DUNE FD by the use NC events.
- Given the current and future limits on the θ_{14} , θ_{24} sterile-active mixing angles, the case $\theta_{24} = \theta_{14} = 0$ becomes relevant by the time DUNE will be running.
 - In this case, the ν_s app. prob. is independent of Δm²₄₁ and δ₂₄, providing a unique sensitivity to the tau-sterile mixing angle.
 - Assuming 10% systematics, DUNE will be sensitive to values of $\sin^2 \theta_{34} \sim 0.12$ (at 90% CL) improving the current constraints. If systematic errors could be reduced down to 5%, the experimental sensitivity would reach $\sin^2 \theta_{34} \sim 0.07$ (at 90% CL).

Conclusions

• Rejection of the three family hypothesis:

- For $\theta_{24} \neq 0$, strong cancellations in the probability can take place for certain values of δ_{24} and Δm_{41}^2 . We found that the sensitivity of the experiment to the presence of a sterile neutrino depends heavily on the value of the new CP phase.
- Testing the 4-flavor hypothesis:
 - For ∆m²₄₁ ≫ ∆m²₃₁ we find that DUNE would be able to improve over NOvA constraints in this place by a factor of two or more (depending on assumed systematics).
 - In the case of Δm²₄₁ ≪ Δm²₃₁ the experimental results would allow values of θ₂₄ and θ₃₄ to be as large as 30°. The reason is, again, the possibility of having a strong cancellation in the oscillation probability.

THANK YOU

Back up

•
$$\Delta_{41} \ll \Delta_{31}$$
:
 $P_{\mu s} = 4|U_{\mu 3}|^2|U_{s3}|^2\sin^2\Delta_{31}$
 $= 2c_{13}^4s_{23}^2c_{24}^2\left[2c_{23}^2s_{34}^2 + \sin 2\theta_{23}\sin 2\theta_{34}s_{24}\cos \delta_{24} + 2s_{23}^2s_{24}^2c_{34}^2\right]\sin^2\Delta_{31}$
• $\Delta_{41} \approx \Delta_{31}$:

$$\begin{split} P_{\mu s} &= 4 \left| U_{\mu 4}^* U_{s4} + U_{\mu 3}^* U_{s3} \right|^2 \sin^2 \Delta_{31} \\ &= 4 \left\{ |U_{\mu 4}|^2 |U_{s4}|^2 + |U_{\mu 3}|^2 |U_{s3}|^2 + 2 \operatorname{Re}[U_{\mu 4}^* U_{s4} U_{\mu 3} U_{s3}^*] \right\} \sin^2 \Delta_{31} \\ &= \left\{ c_{13}^4 \sin^2 2\theta_{23} c_{24}^2 s_{34}^2 + c_{34}^2 \sin^2 2\theta_{24} (1 - c_{13}^2 s_{23}^2)^2 \right. \\ &\left. - c_{13}^2 c_{24} \sin 2\theta_{23} \sin 2\theta_{24} \sin 2\theta_{34} (1 - c_{13}^2 s_{23}^2) \cos \delta_{24} \right\} \sin^2 \Delta_{31} \,. \end{split}$$

•
$$\Delta_{41} \gg \Delta_{31}$$
:
 $P_{\mu s} = 2 |U_{\mu 4}|^2 |U_{s4}|^2 + 4 \{ |U_{\mu 3}|^2 |U_{s3}|^2 + \operatorname{Re}[U_{\mu 4}^* U_{s4} U_{\mu 3} U_{s3}^*] \} \sin^2 \Delta_{31}$
 $+ 2 \operatorname{Im}[U_{\mu 4}^* U_{s4} U_{\mu 3} U_{s3}^*] \sin 2\Delta_{31}$
 $= \frac{1}{2} c_{34}^2 \sin^2 2\theta_{24}$
 $+ \left[c_{13}^4 \sin^2 2\theta_{23} c_{24}^2 s_{34}^2 - c_{13}^2 s_{23}^2 (1 - c_{13}^2 s_{23}^2) c_{34}^2 \sin^2 2\theta_{24} - c_{13}^2 c_{23} \sin 2\theta_{23} \sin 2\theta_{24} \sin 2\theta_{34} \left(\frac{1}{2} - c_{13}^2 s_{23}^2 \right) \cos \delta_{24} \right] \sin^2 \Delta_{31}$
 $- \frac{1}{4} c_{13}^2 c_{24} \sin 2\theta_{23} \sin 2\theta_{24} \sin 2\theta_{34} \sin \delta_{24} \sin 2\Delta_{31}.$