NSI with High-Energy Atmospheric ν 's at IceCube

N. Rius IFIC, Univ. Valencia – CSIC

With Jordi Salvado, Olga Mena and Sergio Palomares-Ruiz, JHEP 1701(2017) 141

NuFact 2017, Sept. 26th 2017, Uppsala

Outline

- Introduction
- NSI: theory
- Phenomenology of NSI
- NSI with HE atmospheric neutrinos at IceCube
- Summary

1. Introduction

- Neutrino oscillations robustly established (Physics Nobel Prize 2015)
- Mass eigenstates (ν_i) are not the same as flavour eigenstates $(\nu_{\alpha}; \alpha = e, \mu, \tau)$, produced in $\ell_{\alpha} + N \rightarrow \nu_{\alpha} + N'$:

$$\nu_{\alpha} = \sum_{i=1}^{N} U_{\alpha i} \nu_{i} \qquad U(\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP})$$

- After a distance L, the probability of detecting a neutrino of flavour β is

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i \neq j} \operatorname{Re}\left[U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right] \sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2\sum_{i \neq j} \operatorname{Im}\left[U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right] \sin(\Delta_{ij})$$
$$\Delta_{ij} \equiv \left(E_{i} - E_{j}\right)L$$

NSI with HE atmospheric neutrinos at IceCube

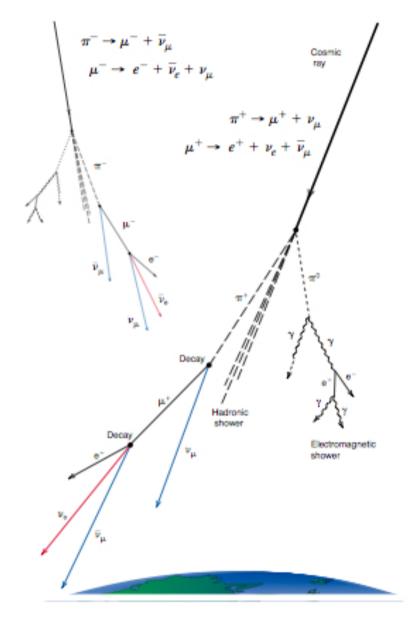
- Neutrino masses \Rightarrow new physics
- Scale ?

> Radiative neutrino masses: new particles at TeV scale \Rightarrow neutrino's NSI

\Rightarrow Impact on (atmospheric) neutrino oscillations

NSI with HE atmospheric neutrinos at IceCube

Atmospheric neutrinos



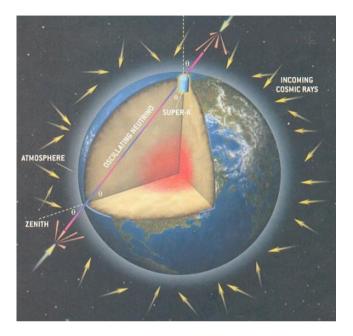
Produced when cosmic ray primaries hit Earth's atmosphere

From pion and kaon
 decays

Prompt atmospheric neutrinos produced in decay of charmed mesons, relevant above ~ 100 TeV

Matter effects

• Atmospheric neutrinos come from different zenith angles (θ_z), crossing different Earth layers



• Effective potential in matter:

$$\begin{split} H(E_{\nu}) &= \frac{1}{2E_{\nu}} U M^2 U^{\dagger} + \operatorname{diag}(V_e, 0, 0) \\ M^2 &= \operatorname{diag}(0, \Delta m_{21}^2, \Delta m_{31}^2) , \qquad V_e = \sqrt{2} \, G_F \, n_e \\ &\downarrow \\ \text{Antineutrinos:} \quad \overline{V}_e = -V_e \qquad \text{electron number density} \end{split}$$

NSI with HE atmospheric neutrinos at IceCube

 Modification of mixing angle and oscillation frequency: Mikheyev-Smirnov-Wolfenstein, MSW

$$\Delta m_m^2 = \sqrt{(\Delta m^2 \cos 2\theta - 2E_\nu V_e)^2 + (\Delta m^2 \sin 2\theta)^2}$$

$$\sin(2\theta_m) = \frac{\Delta m^2 \sin 2\theta}{\Delta m_m^2}$$

• Resonant flavour transition if

$$E_{\nu}^{res} \simeq -\cos 2\theta \, \frac{\Delta m^2}{2V_e}$$

2. NSI: theory

• Recent reviews: Ohlsson 2013, Miranda & Nunokawa 2015

Standard parametrization of NSI's :

Matter NSI $P = P_L, P_R$, f is any SM fermion $\mathcal{L}_{\text{NSI}}^{\text{CC}\ell} = -2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{\delta\sigma P} (\bar{\nu}_{\alpha}\gamma_{\rho}P_L\nu_{\beta})(\bar{\ell}_{\delta}\gamma^{\rho}P\ell_{\sigma})$

 $C_{NSI}^{NC} = -\varepsilon_{\alpha\beta}^{fP} 2\sqrt{2}G_F(\bar{\nu}_{\alpha}\gamma_{\rho}P_L\nu_{\beta})(\bar{f}\gamma^{\rho}Pf)$

$$\mathcal{L}_{\mathrm{NSI}}^{\mathrm{CC}q} = -2\sqrt{2} G_F \,\varepsilon_{\alpha\beta}^{qq'P} \,(\bar{\nu}_{\alpha}\gamma_{\rho}P_L\ell_{\beta})(\bar{q}\gamma^{\rho}Pq') + h.c.$$

NSI with HE atmospheric neutrinos at IceCube

Production (source) and detection NSI

NSI from D=6 operators \rightarrow gauge invariance implies e.g. $\frac{1}{\Lambda^2} (\bar{\nu}_{\alpha} \gamma_{\rho} P_L \nu_{\beta}) (\bar{\ell}_{\gamma} \gamma^{\rho} P_L \ell_{\delta}) \Longrightarrow \frac{1}{\Lambda^2} (\bar{L}_{\alpha} \gamma_{\rho} L_{\beta}) (\bar{L}_{\gamma} \gamma^{\rho} L_{\delta})$

Involves 4-charged leptons, severe exp. constraints from $\ell_{\alpha}^{-} \rightarrow \ell_{\beta}^{-} \ell_{\gamma}^{+} \ell_{\delta}^{-}$ BR($\mu \rightarrow 3e$) < 10⁻¹² $\Rightarrow \epsilon_{e\mu}^{e} < 10^{-6}$

> No observable effects in neutrino interactions

D=8 operatorsBerezhiani, Rossi 2002 $\frac{1}{\Lambda^4}(\bar{L}H)\gamma_{\rho}(H^{\dagger}L)(\bar{e}_R\gamma^{\rho}e_R) \Longrightarrow \frac{\langle H \rangle^2}{\Lambda^4}(\bar{\nu}\gamma_{\rho}P_L\nu)(\bar{e}\gamma^{\rho}P_Re)$ > UV realizations: fine-tuning to avoid D=6 operators

NSI with HE atmospheric neutrinos at IceCube

N. Rius Nufact 2017

Gavela et al. 2009

 SU(2) singlet scalar S with Y=1 ⇒ only gauge invariant d=6 operator which does not generate charged lepton NSIs

Bilenky, Santamaría 1994, Antusch et al. 2009

 Zee-Babu model of neutrino masses: extra scalars h⁺ k⁺⁺

$$\mathcal{L}_{int} = -f_{\alpha\beta}\overline{L_{\alpha}^{c}}i\sigma_{2}L_{\beta}h^{+} + h.c. \Longrightarrow \mathcal{L}_{\mathrm{NSI}}^{d=6} = 4\frac{f_{\alpha\beta}f_{\delta\gamma}^{*}}{m_{h}^{2}}(\overline{\ell_{\alpha}^{c}}P_{L}\nu_{\beta})(\bar{\nu}_{\gamma}P_{R}\ell_{\delta}^{c})$$

•
$$\varepsilon^{eL}_{\alpha\beta} = rac{f_{e\beta}f^*_{e\alpha}}{\sqrt{2}G_F\,m_h^2} \sim \mathcal{O}(10^{-3})$$
 , too small

to be observable now Ohlsson, Schwetz, Zhang 2009

• Type II seesaw model (triplet scalar) $\varepsilon_{\alpha\beta}^{eL} \propto \frac{m_W^2}{m_{\Delta}^2}$ Sizeable $\varepsilon_{e\mu}^{e\mu}$, ε_{ee}^{e} for degenerate spectrum ($\gtrsim 3 \ 10^{-3}$)

NSI with HE atmospheric neutrinos at IceCube

N. Rius Nufact 2017

Malinsky et al. 2009

 Mixing with sterile neutrinos ⇒ generates NSI via non-unitarity effetcs:

$$N = T U = (I - \alpha)U \rightarrow unitary$$

lower triangular 4 Xing 2008, Escrihuela et al. 2015

 $\varepsilon_{\delta\beta}^{fP} \propto \alpha_{\beta\delta} \sim \mathcal{O}(s_{ij}^2) \qquad i \leq 3, j > 3$

- Heavy sterile neutrinos \Rightarrow non-unitarity of PMNS matrix induces changes in W,Z couplings \Rightarrow strong bounds from charged lepton LFV electroweak precision data $\alpha \leq 10^{-3}$ Antusch et al. 2009
- Light sterile neutrinos (below keV) \Rightarrow kinematically accessible, unitarity restored $\alpha \leq \text{few 10}^{-2}$

NSI with HE atmospheric neutrinos at IceCube

- Very light vector boson, $\rm m_{Z^{\prime}} \sim 10$ 100 MeV
- Matter effects in oscillations: $\epsilon \propto ({\rm g'/m_{Z'}})^2/{\rm G_F}^{-1}$, but neutrino scattering suppressed by $({\rm m_{Z'}}^2/{\rm q}^2)^2$
- Diagonal NSI: Solar LMA Dark solution $\varepsilon_{ee}^{qV} \sim -1$ \Rightarrow Z' with m_{Z'} \sim 10 MeV coupled to 1st generation quarks and 2nd,3rd generation of leptons

Farzan, 2015

- LFV NSI: Z' with much smaller ($\zeta \sim 10^{-5}$) coupling to leptons than to quarks $\varepsilon_{\mu\tau}^{qP} \sim 5 \times 10^{-3}, \ \varepsilon_{\mu\mu}^{qP} - \varepsilon_{\tau\tau}^{qP} \sim 0.05$ $\varepsilon_{\alpha\beta}^{qP} \sim \frac{\zeta}{G_F} \frac{g'^2}{m_{Z'}^2}$
- Charged lepton FV amplitude $\propto \zeta^2$
- $\Gamma(\tau \rightarrow \mu q \bar{q})$ suppressed by $(m_{Z'}/m_{\tau})^4$

NSI with HE atmospheric neutrinos at IceCube

N. Rius Nufact 2017

Farzan, Shoemaker 2016

3. Phenomenology of NSI

- In general, CC NSI bounds are one order of magnitude stronger than NC ones, 10⁻² – 10⁻¹ (affect v's production and detection) Grossman 95, González-García et al. 2001, Biggio et al. 2009
- NC NSI in oscillations:

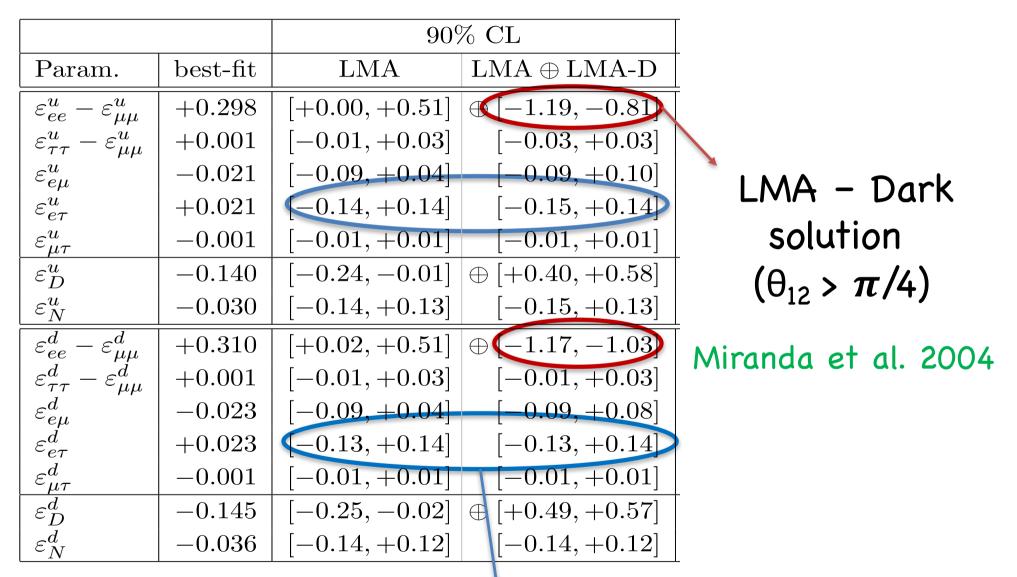
$$H_{\text{mat}} = V_e \begin{pmatrix} 1 + \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\mu} \\ \varepsilon_{e\mu}^* & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ \varepsilon_{e\tau}^* & \varepsilon_{\mu\tau}^* & \varepsilon_{\tau\tau} \end{pmatrix} \qquad V_e = \sqrt{2}G_F n_e$$
$$\varepsilon_{e\tau}^* & \varepsilon_{\mu\tau}^* & \varepsilon_{\tau\tau} \end{pmatrix}$$
$$\varepsilon_{\alpha\beta} \equiv \sum_f \frac{n_f}{n_e} \varepsilon_{\alpha\beta}^{fV} , \ \varepsilon_{\alpha\beta}^{fV} = \varepsilon_{\alpha\beta}^{fR} + \varepsilon_{\alpha\beta}^{fL}$$

• Only sensitive to differences of diagonal NSI, e.g.

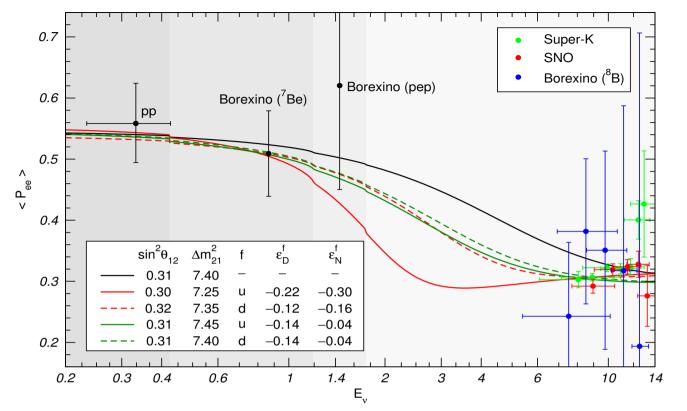
$$\varepsilon_{\alpha\alpha}' \equiv \varepsilon_{\alpha\alpha} - \varepsilon_{\mu\mu}$$

NSI with HE atmospheric neutrinos at IceCube

Global fit from neutrino oscillation data including NSI González-García and Maltoni, 2013



Due to no evidence of low energy turn-up in the solar neutrino



González-García and Maltoni, 2013

 $\epsilon_{N}^{f}, \epsilon_{D}^{f} \Rightarrow$ linear combinations of mixing angles and NSI NC $\epsilon_{\alpha\beta}^{f}$

Such $\varepsilon_{e\tau}^{q}$ can be tested by atmospheric neutrinos at Hyper-Kamiokande and T2HKK Fukasawa et al. 2017 (Yasuda's talk)

LMA – Dark solution can be ruled out at DUNE Coloma 2016, Blennow et al. 2016

NSI with HE atmospheric neutrinos at IceCube

- Relative size of NSI and standard oscillations depends on neutrino energy:
 - $E_{\nu} < 1 \text{ GeV} \implies$ vacuum oscillations dominate
 - 1 GeV < E_{ν} < 10 GeV \Rightarrow intereference NSI -

vacuum osc.

- $E_{\nu} > 10 \text{ GeV} \implies \text{NSI} \text{ may dominate}$

- NSI affect ν 's propagation in a medium
- Atmospheric v's span a huge range of neutrino energies, 10⁻¹ - 10⁵ GeV and of neutrino baselines crossing the Earth, 10 - few 10³ km ⇒ disentangling NSI and standard oscillations

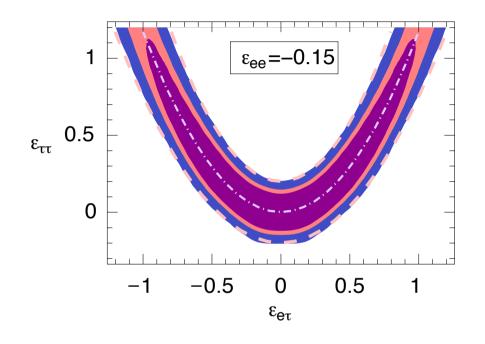
\Rightarrow ideal tool to test and constrain NSI !!!

- Many atmospheric neutrino's NSI analysis restrict to the ν_{μ} ν_{τ} sector.
- Sensitivity of atmospheric neutrinos to $\nu_e \nu_{\tau}$ NSI: Friedland, Lunardini, Maltoni 2004
- One by one $\mathbf{\epsilon}_{lphaeta}$ leads to e.g. $\varepsilon_{ au au} \lesssim 0.2$
- All non-vanishing $\mathbf{\epsilon}_{\alpha\beta}$ in $\nu_e \nu_{\tau}$ sector leads to a \mathbf{H}_{mat} which can be diagonalized as $H_{mat} = \operatorname{diag}(\lambda_{e'}, 0, \lambda_{\tau'})$
- If $\lambda_{\tau'} \lesssim \Delta m^2/(2E_{\nu}) \sim 0.4$, for $E_{\nu} \gtrsim 10$ GeV, oscillations $\nu_{\mu} \rightarrow \nu_{\tau'}$ mimic vacuum oscillations with the same E_{ν} dependence and effective

$$m_m^2 > \Delta m^2 \qquad \sin(2\theta_m) < \sin(2\theta)$$

 Λ

Along the parabola $\lambda_{\tau'} = 0 \implies \varepsilon_{\tau\tau} = |\varepsilon_{e\tau}|^2/(1 + \varepsilon_{ee})$ O(1) values of $\varepsilon_{\tau\tau}$, $\varepsilon_{e\tau}$ are allowed



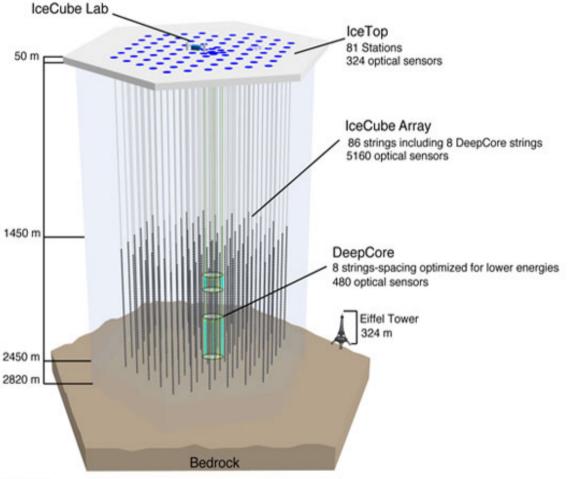
SK atmospheric data From Friedland et al. 2004

• This scenario can be tested by comparing Δm_{31}^2 , θ_{23} from MINOS (almost no matter effects) and future experiments with longer baselines (few 10³ km) and $E \ge 10$ GeV

$E_{\nu} \gtrsim 10 \text{ GeV}$

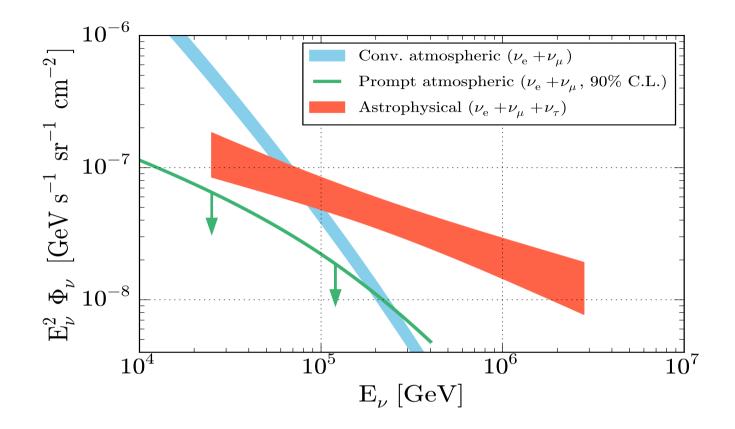
NSI with HE atmospheric neutrinos at IceCube

4. NSI with HE atmospheric ν's at IceCube



IceCube, at the South Pole

• Neutrino flux at IceCube:



IceCube Collaboration 2015

• Search data set: one year of up-going IceCube-86 high energy data (400 GeV to 20 TeV)

- At energies above ~ TeV, attenuation of the neutrino flux due to inelastic scattering becomes important
- Effects of v_{τ} regeneration very small
- Density matrix formalism:

$$\frac{d\rho(E_{\nu}, x)}{dx} = -i[H(E_{\nu}, x), \rho(E_{\nu}, x)]$$

$$-\sum_{\alpha} \frac{1}{2\lambda_{\alpha}(E_{\nu}, x)} \{\Pi_{\alpha}(E_{\nu}), \rho(E_{\nu}, x)\}$$

$$+\int_{E_{\nu}}^{\infty} \rho(E'_{\nu}, x) \frac{1}{n_{N}(x)} \frac{d\sigma_{NC}(E'_{\nu}, E_{\nu})}{dE_{\nu}} dE'_{\nu}$$

$$NC$$
González-García, Halzen and Maltoni 2005
$$NC$$

- Note different normalization: $\varepsilon_{\alpha\beta} \equiv \sum_{f} \frac{n_f}{n_d} \varepsilon_{\alpha\beta}^{fV} \simeq \frac{1}{3} \bar{\varepsilon}_{\alpha\beta}$
- We consider $\varepsilon_{\mu\tau}$ and $\varepsilon' = \varepsilon_{\tau\tau} \varepsilon_{\mu\mu}$
- Diagonal NSI change the effective matter density, while off-diagonal NSI shifts the effective mixing angle.
- Analytic approximation:

 $\phi_{\alpha}(E_{\nu},\theta_{z}) = \phi_{\mu}^{0}(E_{\nu},\theta_{z}) P\left(\nu_{\mu} \to \nu_{\alpha}; E_{\nu}, L(\theta_{z})\right) \exp\{-\int_{0}^{L(\theta_{z})} dx / \lambda_{\alpha}(E_{\nu},x)\}$

$L(\theta_z)$ is the baseline across the Earth

• Two neutrino oscillation probability at a distance L:

$$P(\nu_{\mu} \rightarrow \nu_{\tau}) = \sin^{2} 2\theta_{\text{mat}} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4 E_{\nu}} R\right)$$

$$\sin^{2} 2\theta_{\text{mat}} = \frac{\left(\sin 2\theta_{23} + R_{0} \sin 2\xi\right)^{2}}{R^{2}} \qquad R_{0} = \frac{\phi_{\text{mat}}}{\phi_{\text{vac}}} = \frac{V_{\text{NSI}} L/2}{\Delta m_{31}^{2} L/4 E_{\nu}}$$

$$R^{2} = 1 + R_{0}^{2} + 2 R_{0} \cos 2(\theta_{23} - \xi) \qquad V_{\text{NSI}} = V_{d} \sqrt{4 \varepsilon_{\mu\tau}^{2} + \varepsilon'^{2}}$$

$$\operatorname{Coleman, Glashow 1999} \qquad \sin 2\xi = \frac{2 \varepsilon_{\mu\tau}}{\sqrt{4 \varepsilon_{\mu\tau}^{2} + \varepsilon'^{2}}}$$

• For $E_{\nu} > 100$ GeV, $\phi_{\text{vac}} = \Delta m_{31}^2 L/4E_{\nu} \ll 1$ and if $R_0 = O(1)$

$$P(\nu_{\mu} \to \nu_{\tau}) \simeq \left(\sin 2\theta_{23} \, \frac{\Delta m_{31}^2}{2 \, E_{\nu}} + 2 \, V_d \, \varepsilon_{\mu\tau}\right)^2 \left(\frac{L}{2}\right)^2$$

Independent of ε'

NSI with HE atmospheric neutrinos at IceCube

for antineutrinos

- More sensitivity to $\boldsymbol{\varepsilon}'$ at $\boldsymbol{E}_{\nu} < 100 \text{ GeV}$
- At higher E_ $_{\nu}$, $\phi_{
 m mat} \gg \phi_{
 m vac}$, R_0 \gg 1

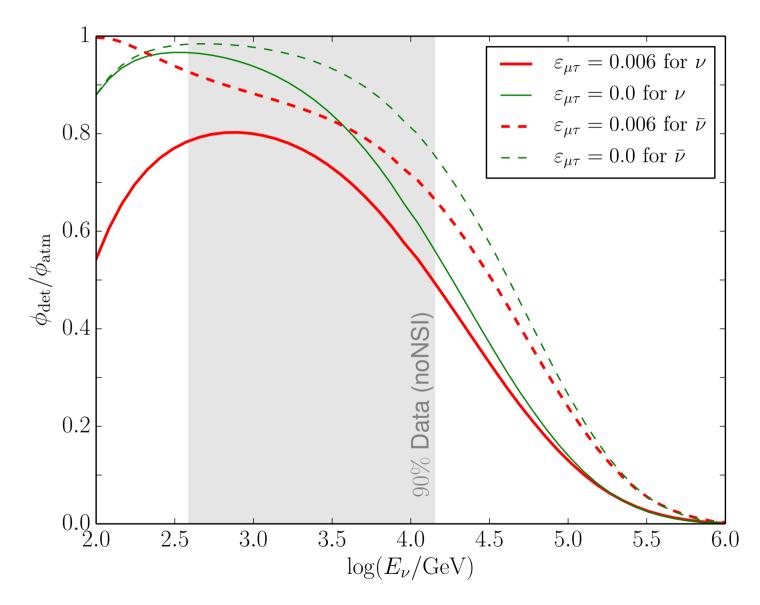
 $P(\nu_{\mu} \to \nu_{\tau}) \simeq \sin^2 2\xi \, \sin^2 \phi_{\rm mat}$

where $\phi_{\text{mat}} = \frac{V_d L}{2} \sqrt{4 \, \varepsilon_{\mu\tau}^2 + \varepsilon'^2} \simeq 30 \left(\frac{\rho}{8 \, \text{g/cm}^3}\right) \left(\frac{L}{2 \, R_{\oplus}}\right) \sqrt{4 \, \varepsilon_{\mu\tau}^2 + \varepsilon'^2}$

for $\phi_{\text{mat}} \ll 1$ $P(\nu_{\mu} \rightarrow \nu_{\tau}) \simeq (\sin^2 2\xi) \phi_{\text{mat}}^2 = (\varepsilon_{\mu\tau} V_d L)^2$ and the same for antineutrinos

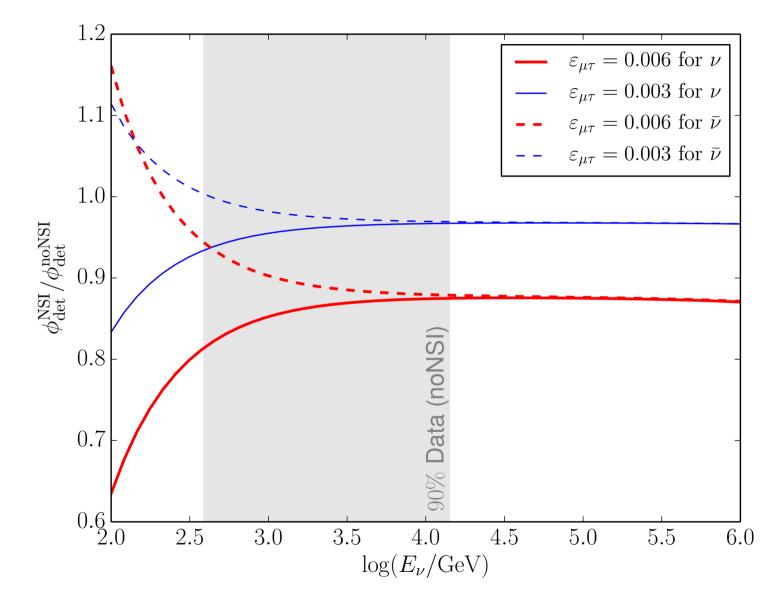
 Numerical solution of the full 3v propagation equations: publicly available libraries SQuIDS and v-SQuIDS Arguelles Delgado, Salvado, Weaver, 2016

 $\varepsilon' = 0$ $\cos \theta_z = -1$

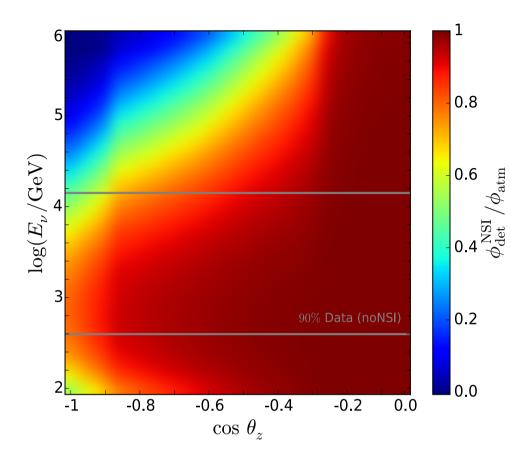


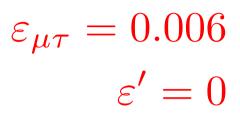
NSI with HE atmospheric neutrinos at IceCube

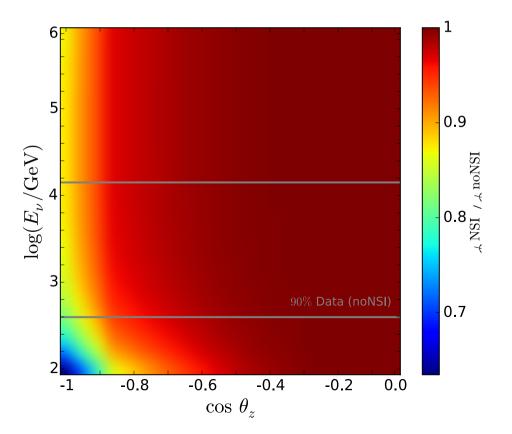
 $\varepsilon' = 0$ $\cos \theta_z = -1$



NSI with HE atmospheric neutrinos at IceCube







- Data: 2011–2012 IceCube 86-string configuration, through-going muon tracks
- Two primary cosmic-ray flux (HG-GH-H3a, ZS) and two hadronic models (QGSJET-II-4 and SIBYLL2.3)
- Systematics:
 - flux normalization, N
 - π/K ratio
 - spectral index $\Delta \gamma$ (tilt in the energy spectrum)
 - DOM_{eff} : uncertainty in the optical efficiency
- Prior on $\boldsymbol{\varepsilon}'$ from SK limits

 $|\varepsilon'| = |\varepsilon_{\tau\tau} - \varepsilon_{\mu\mu}| < 0.049$, 90% CL

SK Collaboration 2011

• Current uncertainties in Δm_{31}^2 , θ_{23}

Summary of parameter's ranges and priors:

Parameter	Default value	Range	Prior	Description
$arepsilon_{\mu au}$	0.006	[-1, 1]	Flat	NSI flavor off-diagonal term
arepsilon'	0	[-1, 1]	Gaussian: $\sigma = 0.04$	NSI flavor diagonal term
N	1	$\left[0.5, 2.0\right]$	Flat	Normalization of the energy spectrum
π/K	1	[0.7, 1.5]	Gaussian: $\sigma = 0.10$	Pion-to-kaon ratio contribution
$\Delta\gamma$	0	[-0.2, 0.2]	Gaussian: $\sigma = 0.05$	Tilt of the energy spectrum
$\mathrm{DOM}_{\mathrm{eff}}$	0.99	[0.90, 1.19]	Flat	Optical efficiency
$\Delta m_{31}^2 / 10^{-3} \; [\text{eV}^2]$	2.484	[2.3, 2.7]	Gaussian: $\sigma = 0.048$	Atmospheric mass square difference
$ heta_{23} \ [^\circ]$	49.3	[43.0, 54.4]	Gaussian: $\sigma = 1.7$	Atmospheric mixing angle

• Likelihood:

$$\ln \mathcal{L}(\varepsilon_{\mu\tau},\varepsilon';\boldsymbol{\eta}) = \sum_{i\in\text{bins}} \left(N_i^{\text{data}} \ln N_i^{\text{th}}(\varepsilon_{\mu\tau},\varepsilon';\boldsymbol{\eta}) - N_i^{\text{th}}(\varepsilon_{\mu\tau},\varepsilon';\boldsymbol{\eta}) \right) - \frac{\varepsilon'^2}{2\sigma_{\varepsilon'}^2} - \sum_j \frac{(\eta_j - \eta_j^0)^2}{2\sigma_j^2}$$

- $N_i^{\rm th}$, $N_i^{\rm data}$ are the expected number of events (number of data events) in bin i
- Public IceCube Monte Carlo: $(E_{\nu}, \theta_z) \Rightarrow (E_{\mu}^{rec}, \theta_z^{rec})$ https://icecube.wisc.edu/science/data/IC86-sterille-neutrino
- Nuissance parameters:

$$\boldsymbol{\eta} \equiv \{N, \pi/K, \Delta\gamma, \text{DOM}_{\text{eff}}, \Delta m_{31}^2, \theta_{23}\}$$

 Bayesian analysis with MultiNest nested sampling algorithm

NSI with HE atmospheric neutrinos at IceCube

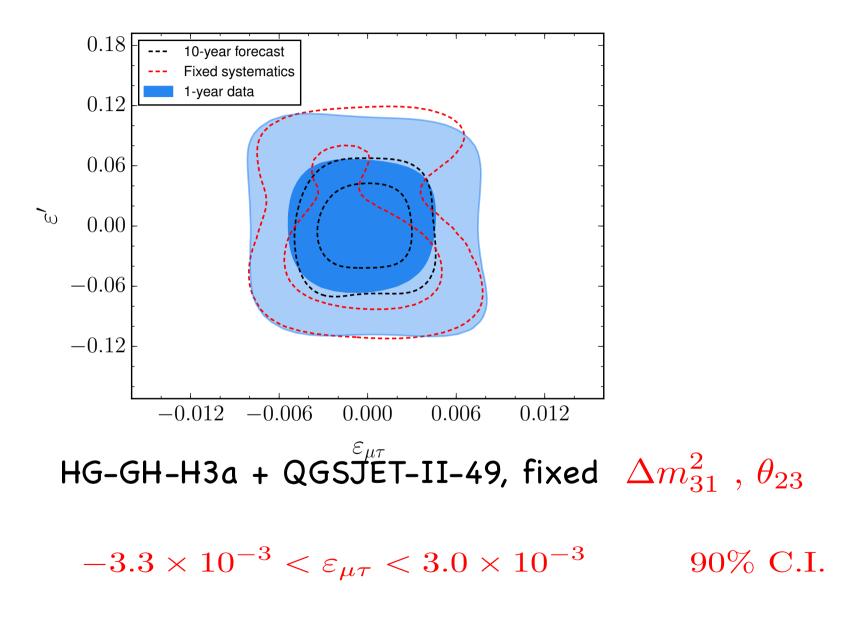
Current bounds:

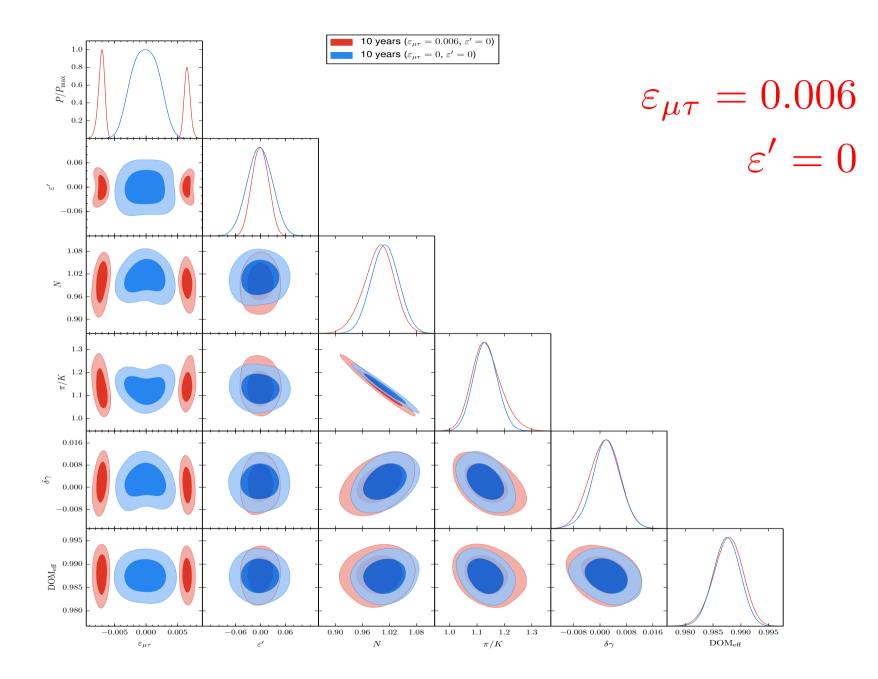
- SK limit: SK Collab. 2011 $|\varepsilon_{\mu\tau}| < 1.1 \times 10^{-2}$ 90% C.L. - 79-string IceCube configuration + DeepCore data: $-6.1 \times 10^{-3} < \varepsilon_{\mu\tau} < 5.6 \times 10^{-3}$, 90% C.L. Esmaili, Smirnov 2013 - Analysis of 3-year IceCube-DeepCore data: 90% C.L. $\varepsilon' = 0$ $-6.7 \times 10^{-3} < \varepsilon_{\mu\tau} < 8.1 \times 10^{-3}$ IceCube collaboration, arXiv:1709.07079 - Our limit (HG-GH-H3a + QGSJET-II-49):

 $-6.0 \times 10^{-3} < \varepsilon_{\mu\tau} < 5.4 \times 10^{-3}$, 90% credible interval (C.I.).

NSI with HE atmospheric neutrinos at IceCube

Ten year forecast, assuming no NSI

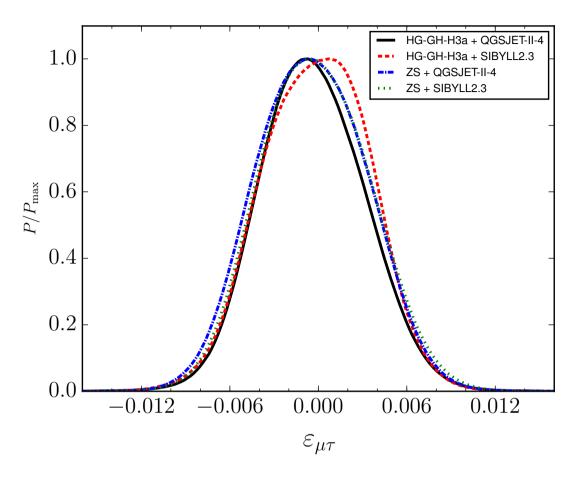




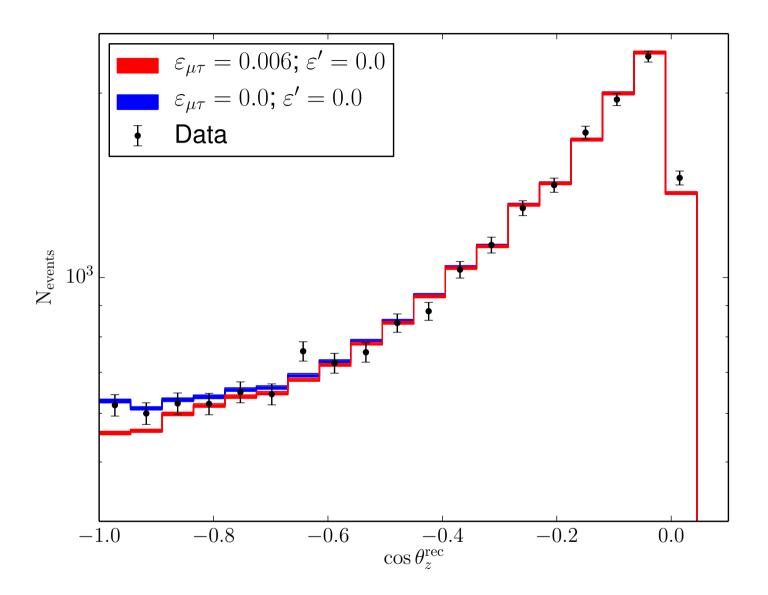
4. SUMMARY

- High energy atmospheric neutrinos at IceCube are a powerful tool to constrain new physics: NSI
- One year data analysis: $-6.0 \times 10^{-3} < \varepsilon_{\mu\tau} < 5.4 \times 10^{-3}$ including systematic uncertainties (90% C.I.)
- Ten year data: sensitive to $\varepsilon_{\mu\tau}$ close to current bound, or improve to $-3.3 \times 10^{-3} < \varepsilon_{\mu\tau} < 3.0 \times 10^{-3}$

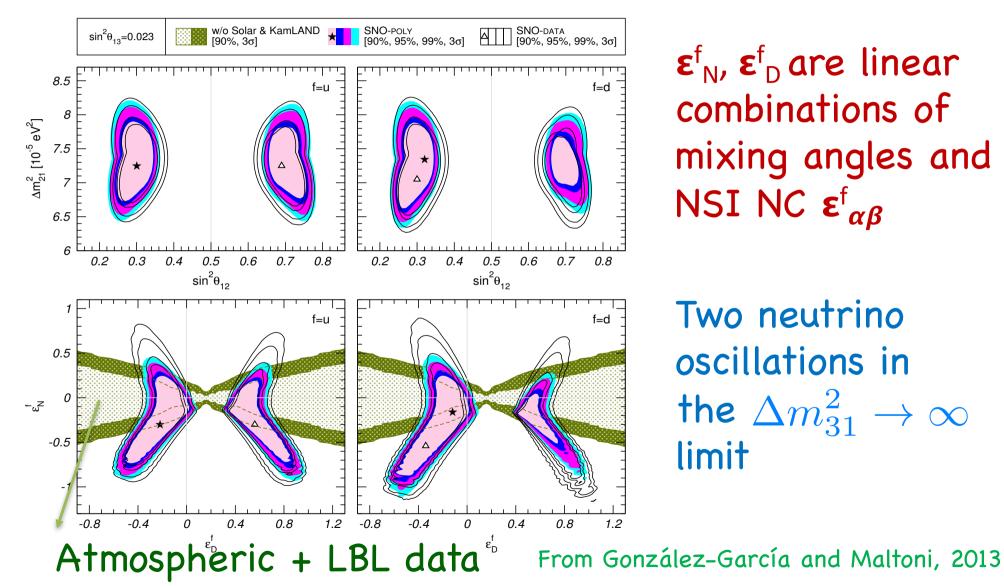
THANK YOU !



Posterior $\epsilon_{\mu\tau}$ probabilities for the different primary cosmicrays and hadronic models, marginalizing wrt other parameters.



Solar & KamLAND fit: LMA - Dark solution ($\theta_{12} > \pi/4$) Miranda, Tortola, Valle 2004



NSI with HE atmospheric neutrinos at IceCube