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− nGd oscillation measurement

− nH oscillation measurement
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− Reactor antineutrino absolute 
rate & shape measurement

* =  released this year

− Search for decoherence 

− Fuel evolution measurement*
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The Daya Bay Reactor Neutrino Experiment
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The Daya Bay Collaboration
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Experimental Setup

EH2

EH1

EH3

• 8 identically designed detectors positioned beside the Daya Bay 
Power Plant in China

• Main Principle: 

(i) sample the reactor 
antineutrino flux in 
the near and far 
locations, and


(ii) look for evidence 
of disappearance  

Among the most 
powerful reactor 

complexes in 
the world!



• The antineutrino detectors (ADs)  are “three-zone” 
cylindrical modules immersed in water pools:

Antineutrino Detectors

RPCs 
inner water shield

AD

PMTs
Tyvek

outer water shield

AD support stand
concrete

Gd-doped 
LS

LS

Mineral Oil

NIM A 811, 133 (2016) NIM A 773, 8 (2015)

Energy resolution: 
σE/E ≅ 8.5%/√E 

Double purpose: shield the ADs 
and veto cosmic ray muons

192 8” 
PMTs

 νe + p → e+ + n  
Inverse Beta Decay (IBD):
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A Selection of Pictures
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Energy Reconstruction
• Use a variety of natural and artificial sources to perform the relative 

calibration of the detectors and to construct an energy model: 
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uncertainty < 0.2%

Absolute antineutrino energy 
scale uncertainty ~1% 
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nGd Oscillation Analysis Dataset

• Our latest oscillation result 
based on neutron capture on Gd 
uses 1230 days of data:

- More than 2.5 million 
antineutrino interactions 
(300K in the far hall)  

- Backgrounds amount to less 
than 2% in all halls

- Significant improvements in 
background reduction and 
energy calibration with respect 
to first publications (see next 
slide) 
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Side-by-side Comparison
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Uncertainty dominated by the statistics and the 0.13% relative error. The 
background uncertainties mostly cancel in this plot. 

Ratios of IBD 
rates 

consistent with 
expectations!

• One of the most significant improvements was the reduction of the 
relative detection efficiency uncertainty down to 0.13%

• Comparing the rates of detectors in the same hall allows to examine 
this claim: 
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nGd Oscillation Analysis Results

2

4

6

8

10

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12

sin2 2✓13

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

�
m

2 ee
(e

V
2
⇥

1
0

�
3
)

2 4 6 8 10

��2

P ve → ve( ) = 1− cos4θ13 sin2 2θ12 sin2 1.267Δm21
2 L

E

                   − sin2 2θ13 sin2 1.267Δmee
2 L

E

• With a relative rate + shape measurement achieve the world’s most 
precise determination of θ13 and Δm2ee:

effective mass 
splitting

still statistics 
dominated!Phys. Rev. D 95, 

07006 (2017)

 sin22θ13 = [8.41±0.27(stat.)±0.19(syst.)]x10-2


|Δm2ee|=[2.50±0.06(stat.)±0.06(syst.)]x10-3 eV2


χ2/ndf = 234.7/263 

Experiment Value (10�3 eV2)

Daya Bay

2.3 2.4 2.5 2.6 2.7 2.8

|�m2
32| (NH, 10�3eV2)

2.45±0.08

T2K 2.540+0.081
�0.080

MINOS 2.42±0.09

NO⌫A 2.67±0.11

Super-K 2.50+0.13
�0.20

RENO 2.56+0.17
�0.18

IceCube 2.50+0.18
�0.24

(some of these results not 
yet published)
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nH Oscillation Analysis Results
• An independent measurement is achieved with IBD events where the 

neutron captures on hydrogen:

sin2

Rate analysis: sin22θ13 = 0.071±0.11, χ2/ndf = 6.3/6 

Phys. Rev. D 93, 072011 (2016)

One of the challenges is the large 
accidental background (>50 times 

larger than for nGd analysis)

621 days of data
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Search for Light Sterile Neutrino Mixing
• A relative comparison of the energy spectra at the three sites allows to 

search for sterile neutrino mixing:

Phys. Rev. Lett. 117, 151802 (2016)

Signal would primarily appear as an additional 
spectral distortion with a frequency different 

from standard 3ν oscillations

Obtain the most stringent limits on sin22θ14 in the 2x10-4 eV2 < |Δm241| < 0.2 eV2 region
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• This result is combined with νμ 
disappearance measurements 
in order to constrain electron 
(anti)neutrino appearance 
results:

Constraining Appearance Results

- Exclude parameter space 
allowed by MiniBoone & LSND 
for Δm241 < 0.8 eV2

constrained with νe 
disappearance 

constrained with νμ 
disappearance 

- Place stringent limits on 
sin2θμe over six orders of 
magnitude in Δm241

- MINOS & Daya Bay have 
released a combined result 
that also includes the updated 
Bugey-3 νe disappearance 
data   

Phys. Rev. Lett. 117, 151801 (2016)
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Reactor Antineutrino Flux

• Measurement of IBD yield in the eight detectors is consistent with that 
from other short baseline reactor experiments: 

Discrepancy with Huber+Mueller model 
could be due to underestimated 

uncertainties in the prediction, and/or 
the existence of a sterile neutrino.

Chin. Phys. C 41, 13002 (2017) 

Rglobal = 0.942 ± 0.009(exp) ± 0.023(model)
Rglobal+DYB = 0.943 ± 0.008(exp) ± 0.023(model)
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Reactor Antineutrino Spectral Shape
• Have also made a high-

statistics measurement 
of the spectral shape of 
reactor antineutrinos:

- Comparison with the Huber + 
Mueller prediction reveals a 
2.9σ discrepancy overall 
(4.4σ in the 4-6 MeV region)

- Excess events have all the 
IBD characteristics and are 
reactor power correlated

- Excess does not appear in 
12B spectra (disfavoring 
detector effects). 

Chin. Phys. C 41, 13002 (2017) 

• Weakens case for sterile 
neutrino interpretation of 
reactor antineutrino anomaly
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Fuel Evolution
• Daya Bay’s high-precision dataset also allows to study how the flux and 

spectral shape of reactor antineutrinos change with fuel composition:

Phys. Rev. Lett. 118, 251801 (2017) 

− See clear changes in flux and shape vs. F239, 
as expected (>10σ and >5σ respectively)

− Evolution of yield/fission is inconsistent with 
prediction from Huber + Mueller model at ~3σ 

As the nuclear fuel burns, the 
effective fission fractions (F) change
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Fuel Evolution
• Also extract individual yields per fission for the two dominant isotopes 

(235U and 239Pu) using conservative constraints on the two minor ones 
(241Pu and 238U): 

A word of caution: there is a tension 
between Daya Bay’s result and the 

global reactor flux data, diminishing the 
significance of this result (see arXiv:
1708.01133 and arXiv:1707.07728)

− 235U identified as the primary 
source of the reactor antineutrino 
anomaly 

− Equal deficit of all isotopes (as 
required by sterile neutrino 
interpretation of anomaly) 
disfavored at 2.8σ 

− Evolution of spectrum is in good 
agreement with Huber-Mueller 
model and shows no abnormalities 
at 4-6 MeV

Phys. Rev. Lett. 118, 251801 (2017) 
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Search for Neutrino Decoherence

Eur. Phys. C, 77:606 (2017)

• Daya Bay’s rich dataset can also be used to probe neutrino decoherence:

- The plane-wave approximation  has 
been successful in explaining most 
experimental results to date, but is not 
self-consistent 

- We examine the data in a framework 
where the neutrino momentum is 
described as a Gaussian wave-packet

- The resulting modified oscillation 
probability depends only on one 
additional parameter: σrel

• Provide the first experimental 
constraints on σrel:

 10-14 ≲ σrel < 0.23
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Modulation of Cosmic Muon Flux
• Daya Bay’s detectors also allow for a precise measurement of the cosmic 

muon flux at different overburdens (i.e. average energies).  
• Have observed a clear correlation with the stratospheric temperature:

arXiv:1708.01265

Measurement of correlation coefficients 
is consistent with the model. 

As T increases the atmosphere 
becomes less dense, reducing 

mesons’ probability of interaction

Daya Bay’s 
points: D1, 
D2 and D3
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Summary & Outlook 
• Have updated many results and released some new ones this summer:

sin22θ13 = (8.41±0.33)x10-2


|Δm2ee| = (2.50±0.08)x10-3 eV2

• Daya Bay will run until 2020 and produce many other important results: 

Stay tuned!

- Working to further reduce the systematics through an FADC readout system in 
EH1-AD1 and a special calibration campaign, among other activities. 

- Goal is to reduce uncertainties in θ13 and Δm2ee to < 3%. 

+ high-statistics absolute reactor antineutrino flux and shape measurements, 
fuel evolution, searches for a sterile neutrino, … etc. 

- Other results are also in preparation (CPT violation search, neutron yield… )

Latest 
oscillation 

results


