The cLFV searches at BESIII

Xiaoshen Kang (On behalf of the BESIII Collaboration)

Nankai University

Tianjin, China

International Workshop on Neutrinos from Accelerators 25-30 September 2017, Uppsala

Beijing Electron Positron Collider II (BEPCII)

Linac: The injector, a 202M long electron position linear accelerator that can accelerate the electrons and positrons to 1.3 GeV.

BESIII: Beijing Spectrometer III, the main detector for BEPC II.

The storage ring: A sports track shaped accelerator with a circumference of 237.5M.

BEPCII: a double-ring machine

Beam energy: 1-2.3 GeV Luminosity: 1×10^{33} cm⁻²s⁻¹ **Optimum energy:** 1.89 GeV **Energy spread:** 5.16 × 10⁻⁴ No. of bunches: 93 **Bunch length:** 1.5 cm **Total current: 0.91** A **SR mode:** 0.25A @ 2.5 GeV /home21/home/zhaozhuo/setup/liferateNew.edl

2016/04/05 22:29:41 E32/cm^2/s Luminosity 10.00 e+ e_{-} Energy 1.8830 1.8833 [GeV] 849.97 852.83 Current [mA] 1.52 Lifetime 2.27[hr] Inj.Rate 0.00 0.00 [mA/min]

BESIII Detector

Wire tracker (no Si); TOF + dE/dx for PID; CsI Ecal; RPC muon

Physics in τ-c energy region

- Nucleon form factors
- Y(2175) resonance
- Exotic states with s quark, Zs
- MLLA/LPHD and QCD predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Rare and forbidden decays
- Physics with charmonium and τ lepton

- XYZ particles
- Vcd|, Vcs|
- f_D and f_{Ds}
- $D_0 \overline{D}_0$ mixing, CPV
- Charmed baryons

R scan: precision $\Delta \alpha_{\text{QED}}$, a_{μ} , charm quark mass extraction.

J/ψ Data Sample

- Huge and clean data which provide a good lab to probe rare decays such as LFV process.
- More data will be taken in the next run.

Why charged Lepton Flavor Violation?

- The non-zero neutrino masses and mixing can introduce flavor transitions, but the expected branching fractions are at an extremely rare level.
- Thus, searching for the cLFV events which are SM forbidden would be clear signal of physics beyond the SM.
- For example,

Why charged Lepton Flavor Violation?

• Theoretical prospects for $\mu \rightarrow e$, $\mu N \rightarrow eN$ and $\mu \rightarrow 3e$

10-14

and $\mu \rightarrow \gamma e$: 10⁻¹³ and

Why charged Lepton Flavor Violation?

• And experimental results for $\mu \rightarrow e$, $\mu N \rightarrow eN$ and $\mu \rightarrow 3e$

 LFV in Meson decays

Channel	Upper limit	Experiment
$\pi^0 \to \mu^{\pm} e^{\mp}$	3.59×10^{-10}	KTeV
$\eta \to \mu^{\pm} e^{\mp}$	6×10^{-6}	Saturne SPES2
$K_L^0 \to \pi^0 \mu^\pm e^\mp$	7.56×10^{-11}	KTeV
$K_L^0 \to 2\pi^0 \mu^\pm e^\mp$	1.64×10^{-10}	KTeV
$K_L^{\overline{0}} \to \mu^+ e^-$	4.7×10^{-12}	BNL E871
$K^+ \to \pi^+ \mu^+ e^-$	1.3×10^{-11}	BNL E865, E777
$D^+ \to \pi^+ \mu^\pm e^\mp$	3.4×10^{-5}	Fermilab E791
$D^+ \to K^+ \mu^\pm e^\mp$	6.8×10^{-5}	Fermilab E791
$D^0 \to \mu^{\pm} e^{\mp}$	8.1×10^{-7}	BaBar
$D_s^+ \to \pi^+ \mu^\pm e^\mp$	6.1×10^{-4}	Fermilab E791
$D_s^+ \to K^+ \mu^\pm e^\mp$	6.3×10^{-4}	Fermilab E791
$B^0 \to \mu^{\pm} e^{\mp}$	9.2×10^{-8}	Babar (347 fb^{-1})
$B^0 \to \tau^{\pm} e^{\mp}$	1.1×10^{-4}	CLEO (9.2 fb^{-1})
$B^0 \to \tau^{\pm} \mu^{\mp}$	3.8×10^{-5}	CLEO (9.2 fb^{-1})
$B^+ \to K^+ e^{\pm} \mu^{\mp}$	9.1×10^{-8}	BaBar (208 fb ^{-1})
$B^+ \to K^+ e^{\pm} \tau^{\mp}$	7.7×10^{-5}	BaBar (348 fb^{-1})
$B_s^0 \to e^{\pm} \mu^{\mp}$	6.1×10^{-6}	$CDF (102 \text{ fb}^{-1})$

• LFV in quarkonium decays

$l_{1}l_{2}$	μau	e au	$e\mu$
$B(\Upsilon(1S) \to l_1 l_2)$	6.0×10^{-6}	_	
$B(\Upsilon(2S) \to l_1 l_2)$	3.3×10^{-6}	3.2×10^{-6}	_
$B(\Upsilon(3S) \to l_1 l_2)$	3.1×10^{-6}	4.2×10^{-6}	_
$B(J/\psi \to l_1 l_2)$	2.0×10^{-6}	8.3×10^{-6}	1.6×10^{-7}
$B(\phi \to l_1 l_2)$	n/a	n/a	4.1×10^{-6}

• LFV in quarkonium resonances decay

$l_{1}l_{2}$	μau	e au	$e\mu$
$B(\Upsilon(1S) \to l_1 l_2)$	6.0×10^{-6}	_	_
$B(\Upsilon(2S) \to l_1 l_2)$	3.3×10^{-6}	3.2×10^{-6}	—
$B(\Upsilon(3S) \to l_1 l_2)$	3.1×10^{-6}	4.2×10^{-6}	_
$B(J/\psi \to l_1 l_2)$	2.0×10^{-6}	8.3×10^{-6}	1.6×10^{-7}
$B(\phi \to l_1 l_2)$	n/a	n/a	4.1×10^{-6}

• LFV in quarkonium resonances decay

• LFV in quarkonium resonances decay

$J/\psi \rightarrow e\mu$ at BESIII (1)

Phys. Rev. D 87 (2013) 112007

- $J/\psi \rightarrow e\mu$ at **BESIII**, 225M J/ψ events are used.
- Event topology: two opposite, back-to-back, charged tracks, no obvious extra EMC showers
- Most of the backgrounds are from $J/\psi \rightarrow e^+e^-$, $J/\psi \rightarrow \mu^+\mu^-$, $J/\psi \rightarrow \pi^+\pi^-$, $J/\psi \rightarrow K^+K^-$, $e^+e^-\rightarrow e^+e^-(\gamma)$ and $e^+e^-\rightarrow \mu^+\mu^-(\gamma)$
- To suppress these backgrounds, several powerful criteria are employed.

$J/\psi \rightarrow e\mu$ at BESIII (2)

Phys. Rev. D 87 (2013) 112007

- To suppress backgrounds from electron mis-ID from $J/\psi \rightarrow e^+e^-$, $e^+e^- \rightarrow e^+e^-(\gamma)$,
- (1) no associated hits in the MUC;
- (2) 0.95 <E/p< 1.50 GeV, where E is the energy deposit in the EMC and p the momentum measured by the MDC;
- (3) the absolute value of $\chi^{e}_{dE/dx}$ (the difference between measured and expected dE/dx for electron hypothesis over its resolution) should be less than 1.8;

$J/\psi \rightarrow e\mu$ at BESIII (3)

Phys. Rev. D 87 (2013) 112007

- To suppress backgrounds from muon mis-ID from $J/\psi \rightarrow \mu^+\mu^-$, $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$,
- (1) Penetration depth in the MUC larger than 40 cm;
- (2) E/p<0.5 GeV and 0.1 <E< 0.3 GeV
- (3) the value of $\chi^{e}_{dE/dx}$ (the difference between measured and expected dE/dx for electron hypothesis over its resolution) should be less than -1.8;

FIG. 2 (color online). The distributions of the penetration depth in the MUC (left) and the deposited energy in the EMC (right) for the simulated muon, pion, and kaon samples.

J/ψ → eµ at BESIII (4)

FIG. 3. A scatter plot of $E_{\rm vis}/\sqrt{s}$ versus $|\Sigma \vec{p}|/\sqrt{s}$ for the J/ψ data. The indicated signal region is defined as $0.93 \le E_{\rm vis}/\sqrt{s} \le 1.10$ and $|\Sigma \vec{p}|/\sqrt{s} \le 0.1$.

Phys. Rev. D 87 (2013) 112007

TABLE I. Summary of systematic uncertainties (%).

Sources	Error
e^{\pm} tracking	1.00
μ^{\pm} tracking	1.00
e^{\pm} ID	0.62
μ^{\pm} ID	0.04
Acollinearity, acoplanarity	5.36
Photon veto	1.19
$N_{J/\psi}$	1.24
Total	5.84

With 225 M J/ψ data

B(J/ψ → eμ) < N^{UL}_{obs}/(N_{J/ψ}ε)<**1.6 × 10⁻⁷** @ 90% C.L.

where N^{UL}_{obs} is calculated based on the POLE program which is a Feldman-Cousins method including the number of observed events, the number of background events and its uncertainty, and the systematic uncertainties.

Prospect for J/ ψ → eτ at BESIII

Simulated based on BESIII

• $J/\psi \rightarrow e\tau, \tau \rightarrow \mu \upsilon_{\mu} \upsilon_{\tau}$

software and hardware systems

- Event topology: two opposite charged tracks, missing momenta
- Most of the backgrounds are from $J/\psi \rightarrow \pi^+ K_L K^-$, $J/\psi \rightarrow K_L K_L$, $J/\psi \rightarrow K^{*0} K^0$
- After background suppression, the detection efficiency is estimated to be 14%

With 1300 M J/ ψ MC events

B(J/ $\psi \rightarrow e\tau$)^{sensitivity} < N^{UL}_{obs}/(N_{J/ ψ}ε)< 6.3 × 10⁻⁸ @ 90% C.L.

where N^{UL}_{obs} is calculated based on the POLE program which is a Feldman-Cousins method including the number of background events and its uncertainty, and the systematic uncertainties (assumed to be 5%), where the number of observed events is set to be zero.

Prospect for J/ ψ → eτ at BESIII

<mark>В(Ј/ѱ → ет</mark>)

- Event topology: two opposite charged tracks, missi momenta
- Most of the backgrounds are from $J/\psi \rightarrow J/\psi \rightarrow K^{*0}K^{0}$
- After background suppression estimated to be 14%

rency is

 $1/\psi$ MC events

Simulated based on BESIII

software and hardware systems

_ຟ໌€)< 6.3 × 10⁻⁸ @ 90% C.L.

where N^{UL} of the POLE program which is a Feldman-Cousing the POLE program which is a Feldmannumber of background events and its matic uncertainties (assumed to be 5%), where the number of be zero.

2017/9/23

Prospect for $J/\psi \rightarrow \mu\tau$ at BESIII

Simulated based on BESIII

• $J/\psi \rightarrow \mu\tau, \tau \rightarrow ev_ev_\tau$

software and hardware systems

- Event topology: two opposite charged tracks, missing momenta
- Most of the backgrounds are from $J/\psi \rightarrow \pi^+ K_L K^-$, $J/\psi \rightarrow K_L K_L$, $J/\psi \rightarrow K^{*0} K^0$
- After background suppression, the detection efficiency is estimated to be 19%

With 1300 M J/ ψ MC events

B(J/ $\psi \rightarrow \mu \tau$)^{sensitivity} < N^{UL}_{obs}/(N_{J/ ψ}ε)< 7.3 × 10⁻⁸ @ 90% C.L.

where N^{UL}_{obs} is calculated based on the POLE program which is a Feldman-Cousins method including the number of background events and its uncertainty, and the systematic uncertainties (assumed to be 5%), where the number of observed events is set to be zero.

Prospect for $J/\psi \rightarrow \mu\tau$ at BESIII

• $J/\psi \rightarrow \mu \tau, \tau \rightarrow e \upsilon_e \upsilon_\tau$

Simulated based on BESIII software and hardware systems

icy is

ψ MC events

- Event topology: two opposite charged tracks, missing momenta
- Most of the backgrounds are from $J/\psi \rightarrow \pi^{*}$ $J/\psi \rightarrow K^{*0}K^{0}$
- After background suppression estimated to be 19%

<mark>Β(J/ψ → μτ)^{se}</mark>

<mark>√</mark>< 7.3 × 10⁻⁸ @ 90% C.L.

where N^{UL} Cousins uncertainties (assumed to be 5%), where the number of background events and its atic uncertainties (assumed to be 5%), where the

2017/9/23

Prospect for J/ $\psi \rightarrow \gamma e\tau$; γµτ at BESIII

- $J/\psi \rightarrow \gamma e\tau, \tau \rightarrow \mu \upsilon_{\mu} \upsilon_{\tau}$
- $J/\psi \rightarrow \gamma \mu \tau, \tau \rightarrow e \upsilon_e \upsilon_\tau$

Simulated based on BESIII software and hardware systems

 Event topology: two opposite charged tracks, missing momenta, one photon.
 With 1300 M J/ψ data

Result with experimental data is on the way

- BESIII collaboration got the
 leading upper limit on J/ψ → eμ
 decay with 225 M J/ψ.
- Better upper limits on $J/\psi \rightarrow e\tau$ and $J/\psi \rightarrow \mu\tau$ are coming soon.
- upper limits on $J/\psi \rightarrow \gamma e\tau$ and $J/\psi \rightarrow \gamma \mu \tau$ are coming soon.
- New data taking plan has been approved! Better constraints can be expected.

Backup

For the polar and azimuthal angles of the two charged tracks, these conditions should hold: $|\Delta \theta| < 0.9^{\circ}$, where $|\Delta \theta| = |180^{\circ} - (\theta_1 + \theta_2)|$ and $|\Delta \phi| < 1.4^{\circ}$, where $|\Delta \phi| = |180^{\circ} - |\phi_1 - \phi_2||$.

"back-to-back"