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Standard model neutrinos work well
• 3 mixing angles, 2 mass splittings (Δm2=2.4 10-3 eV2, δm2=8.10-5 eV2)

• Unknown absolute mass scale and neutrino mass ordering (“hierarchy”)

• Unknown CP phase(s) and nature of neutrino mass term

• No more than 3 neutrinos coupled to Z0

BUT
• Weak couplings are poorly measured: room for small corrections
• Physics beyond standard model is called for by neutrino masses

• Either right-handed neutrinos for Dirac mass terms or Majorana fields to 
build Majorana mass terms and possibly explain small mass through See-Saw

AND
• A few experimental results sing out of tune

NEUTRINOS:  PHYSICS  GOLD  MINE  OF  LAST  DECADES
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A few long standing anomalies at small L/E may be interpreted as mixing of 
one or more sterile neutrinos with known states

• In a short schematic list:

• LSND/MiniBoone P(νμ→νe) and  
P(νμ→νe) (long standing)

• Reactors at 5-100 m (“reactor anomaly”)

• 51Cr and 37Ar sources with Gallium  
 solar ν detectors (“Gallium anomaly”)

• It is intriguing that all anomalies point to ~1 eV mass scale
• Although some results (e.g. IceCube 1605.01990) disfavour simple 

explanations and recent reactor experiments narrow parameter space

A large ultra-pure solar neutrino detector such as Borexino can help 
clarify this (unclear indeed) scenario

• If confirmed, there will be maybe a long way to go to understand its origin

SCIENTIFIC  MOTIVATIONS
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J. K
opp et al., arXiv:1303.3011
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Two main elements:

• A pure source of (1-10 MeV) νe or νe

• A reactor (νe  only) or a powerful radioactive source ( νe and νe)

• The capability to measure the interaction rate as a function of the 
distance from the source
• Option 1: movable detector from a few up to ~20 m from the source

• Option 2: the detector is large and it is either segmented or has the capability to 
reconstruct efficiently the neutrino interaction point

Signatures:

• Deviation from 1/R2 behaviour for movable detectors (Option 1)

• Direct observation of oscillation pattern for Option 2

SOURCE  AND REACTOR EXPERIMENTS
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reactor or source movable detector on rail

segmented or position 
sensitive fixed detector

- -

N.B. A source
could be placed 

inside a detector
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CRUCIAL  PARAMETERS
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Arxiv  
1212.2182v1

• Small size (~one litre). Better for small Δm2

• No source background if well shielded

• Deep underground: no μ-induced background
• Known νe spectrum (reactors are difficult!)

• (well…. if you measure it well!)

• Can go very close (min. distance in SOX ~4 m)

• Can take data for limited time  
(it decays)

• Flux cannot reach reactors’ values

• 150 kCi max because of heat, mainly

• Hard (damn hard…) to: 
• Make,  Authorise, Transport,  

Use, Dispose

SOURCE  PRO SOURCE   CONS
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ACCELERATOR EXPERIMENTS: SBL @ FNAL
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ACCELERATOR EXPERIMENTS: SBL @ FNAL
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Fast neutrons (reactors only)
• Fast neutrons mimic prompt-delayed  

coincidences when:

• Are produced by muon spallation

• Directly come from reactor  
(therm.+capture)

• Rejection strategies

• Shield; muon tagging; PSD to identify  
positrons; subtraction using “off” states  
of reactor

Accidentals (surface only)
• Reactor γ + thermal n coincidence

• Very high energy γ are produced  
by neutron capture on passive  
materials (e.g. Fe)

• Rejection strategies

• Shielding is crucial; Subtraction  
using “off” states of reactor

BACKGROUND IN ANTI-NEUTRINO EXPERIMENTS
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SBL REACTOR EXPERIMENTS
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Credit:  S. Schönert
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NEOS
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DANSS

11



/34   NuFact 2017 -  Sep.  28th, 2017                                                         M. Pallavicini   

• β-  νe up to 3 MeV from 144Pr
• 144Ce  T1/2= 285 days

• Extracted from spent nuclear fuel

• Detection via IBD:

• Threshold: 1.8 MeV

• ~250 μs coincidence between e+ & n

• Background free in Borexino (see later)

• Activity: ≈ 100-150 kCi (≈ 3 - 4.5 1015 Bq)

THE  SOX  νe  SOURCE
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The idea of making a neutrino or anti-neutrino source experiment with BoreXino 
dates back to the birth of the project (1991)

SOX Proposal European Research Council 320873 - Feb. 2012 - (P.I.  M.Pallavicini)

• Original SOX proposal: 51Cr neutrino source OR 144Ce anti-neutrino source

Jan. 2014: agreement between CEA and INFN and Borexino 
Collaboration to merge the CELAND proposal with SOX

• CeSOX using the Ce-144 source proposed and developed by the CEA group    
(based on another ERC project, P.I. T. Lasserre)

SOX  HISTORICAL  BACKGROUND
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Mainly, a solar neutrino experiment:

• ν + e- → ν + e-  in an organic liquid scintillator

• Ultra-low radioactive background obtained  
via selection, shielding, and purifications

• Spatial resolution:  12 cm @ 2 MeV
• Energy resolution:  ~3.5% @ 2 MeV

Anti-Neutrino detection capability  
demonstrated by geo-ν detection

• geo-ν: ~5 ev/y in 300 t
• distant reactors: ~10 ev/y in 300 t
• accidental background: < 1 ev/y

SOX experiment is background free
• Expected signal: > 104 events in 1.5 y

THE  BOREXINO  EXPERIMENT
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PHYSICAL REVIEW D 92, 
031101(R) (2015)
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Neutrinos
• Compton-like on electrons :  

• ν + e- → ν + e-

• Mono-energetic νe  produce the  
characteristic shoulder

• Main background: 7Be solar νe !

• ~ 45 cpd 100 t target

Electron anti-neutrinos
• Standard Reines-Cowan delayed  

coincidence technique (inverse β decay on p)

• Extremely small background:

• 4 geo-neutrinos ev/y in 300 t

• 9 reactor
• 0.4 random coincidences

BOREXINO  DETECTION  CAPABILITIES
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THE  BOREXINO  DETECTOR  AND  SOX
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THE  BOREXINO  DETECTOR  AND  SOX
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Two different techniques:

• Standard disappearance
• Rate depends on θs and (weekly) on Δm2

• Sensitivity depends on:
• Source activity (statistics)

• Error on source activity and νe spectrum

• FV determination

• Spatial waves.  [C.. Grieb et al., Phys. Rev. D75: 093006 (2007)]

• For Δm2 ~1 eV2, oscillation wavelength is smaller than detector size (~ 7 m), 
but larger that the spatial resolution (~ 15 cm)
• The distribution of the event distance from the source shows 

oscillations 
• Direct measurement of Δm2 and θs independently
• Does not depend neither on source activity nor on FV determination

THE  SIGNAL  IN  SOX  (I)
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SOX is at the same time a disappearance  
experiment and an oscillometry one

THE  SIGNAL  IN  SOX  (2)
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The making of a 100-150 kCi 144Ce source is not a trivial business

• Essentially a unique vendor (Mayak, Russia)

• Humongous amount of paperwork for authorisations (Russia, France, Italy)

• Many technical problems to be solved for:

• CeANG production and transportation
• Usage and insertion beneath Borexino

• High precision measurement of the activity and of the νe spectrum

Synergy between CEA, INFN and Borexino Collaboration

• CEA/INFN: source production and transportation 

• INFN: site preparation, shield, and Borexino detector preparation (new trigger)

• CEA/INFN/TUM: High precision calorimetry

• Borexino Collaboration: detector, high precision MC, data analysis, calibrations

MAKING  THE  EXPERIMENT

20
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THE  MAKING  OF  THE  νe  SOURCE     
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The CeO2 powder must be quite pure
• Radio-protection, relation between heat and activity, strict LNGS 

requirements on n flux
• Rare Earths:  γ rate < 10-3 Bq/Bq w.r.t. 144Ce

• Pu and actinides:  < 10-5 Bq/Bq  w.r.t. 144Ce (max 105 n/s)
• A long list of nuclei to check! (γ,α,ICPMS,n)
• 22Na, 44Ti-44Sc, 49V, 54Mn, 55Fe, 57Co, 60Co, 63Ni, 65Zn, 68Ge-68Ga, 90Sr-90Y, 91Nb,  

93mNb, 106Ru-106Rh, 101Rh, 102Rh, 102mRh, 108mAg, 110mAg, 109Cd, 113mCd, 119mSn,  
121mSn, 125Sb, 134Cs, 137Cs, 133Ba, 143Pm, 144Pm, 145Pm, 146Pm, 147Pm, 145Sm, 151Sm,  
150Eu, 152Eu, 154Eu, 155Eu, 148Gd, 153Gd, 157Tb, 158Tb, 171Tm, 173Lu, 174Lu, 172Hf-172Lu,  
179Ta, 178mHf, 194Os-194Ir, 192mIr, 193Pt, 195Au, 194Hg-194Au, 204Tl, 210Pb206Pb, 207Bi, 208Po,  
209Po, 228Ra208Pb, 227Ac207Pb, 228Th208Pb, 232U208Pb, 235Np, 236Pu-232U, 238Pu230Th,  
239Pu, 240Pu, 241Pu-241Am, 241Am, 242mAm-230Th, 241Am, 244Cm-243Cm, 243Cm235U,  
244Cm, 248Bk-244Am, 249Bk-249Cf, 248Cf ,249Cf, 250Cf, 252Cf, 252Es, 254Es-250Bk

γ radiation must be fully shielded
• Container inserted into a 19 cm thick W shield
• Being Built at Xiamen Ltd, China

• > 2.2 ton weight

• Made with W-Ni-Fe alloy for mechanical properties

• W ~ 95%

THE  CAPSULE  AND  ITS  BULKY  SHIELD
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LOCATION  OF  THE  SOURCE @ LNGS
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Radiochemical plant

• Standard process (PUREX) used 
to treat spent nuclear fuel

• Production of and separation of 
CeO2

• Encapsulation of powder

• Activity measurement

Radioisotope Plant

• Source fabrication

• Certification ISO 9978

• Loading into W shield

• Loading into transportation cask

CE-144   EXTRACTION

24
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Complexing agent displacement  
chromatography for Rare Earths  
Elements(REE)

Spent Nuclear Fuel

• Mayak: 100 t PUREX / year

• 1 ton SNF

• 13 kg REE (22 g Ce-144 (3y, 70 kCi))

Production

• Start now

• Delivery Aug.-Oct 2016  
S. Petersburg harbour

• @LNGS end of 2016

CE-144  PURIFICATION
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Specs

• >3.7 PBq (144Ce only); powder 4-6 g cm-3 density

• CeO2 with Ce from fresh spent fuel (<2 y old)

• Purity

• Rare Earth:  γ rate < 10-3 Bq/Bq w.r.t. 144Ce

• Pu and actinides:  < 10-5 Bq/Bq  w.r.t. 144Ce(max 105 n/s)

• Production

• Key: separation of Ce from other REE with chromatography

• CeO2 powder sealed in a container

• Container inserted into a 19 cm thick W shield

• Internal T ~ 500 °C;   surface T @ 20:°C  ~ 80 °C

A  VERY  LONG  STORY  MADE  SHORT:  CeANG

26

for more details on CeANG see e.g.  
T. Lasserre talk at Venice 2015
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A long way (~1-2 months):

• Mayak → St. Petersburg by train

• St. Petersburg → Le Havre by boat

• Le Havre → Saclay → LNGS by truck

• Container: TN MTR

• 24 t container for nuclear fuel (CEA)

• IZOTOP (Russia), AREVA (Main contractor, France) + MIT (Italy) will handle the long journey

A  LONG  STORY  MADE  SHORT:  TRANSPORTATION
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for more details on CeANG see e.g.  
T. Lasserre talk at Venice 2015
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The activity is obtained by measuring the heat released inside the shield 
and absorbed  by a water flow

• In principle, an easy measurement:

• Systematics are the crucial point:

• Heat losses
• Gas convection

• Conduction through contacts

• Radiation

• Relation between power and flux (anti-neutrino beta 
spectrum)

CALORIMETRIC  MEASUREMENT
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As disappearance experiment, sensitivity depends on: (waves detection 
does not!):

• Activity: Calorimetric measurement will reach 1% precision (two measurements 
with independent calorimeters)

• Fiducial volume (Calibration program in early 2017, 0.7% achieved for Be-7)

• Detector response: well known from Borexino data

• Measurements of 144Ce β spectrum, above 1.8 MeV

GETTING  SUFFICIENT  PRECISION
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MINIMISING  HEAT  LOSSES
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Convection Radiation Conduction

P < 5·10-5 mbar

P ≈ 0 W P < 1 W P < 0.1 W

Vacuum system 
Turbo molecular pump 
skroll pump

2 stages of super insulator  
      (10 foils each) 

Thermalisation of the external  
chamber by hot water flow 

Hanging platform suspended  
by three kevlar ropes
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Preliminary results from calorimeter calibrations

• Close to 0.1 % precision in heat measurement

• Note: translation of the heat measurement to neutrino flux requires 
precise knowledge of Ce-144 - Pr-144 spectra
• Work in progress

CALORIMETRY   PERFORMANCE
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144Ce source @ 8.2 m from the center.  1.5% calibration.  100-150 kCi bands.
• Under the assumption that a single sterile dominates

EXPECTED  SENSITIVITY 
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Construction of the shield done
Work at LNGS site and authorisation done
Construction of the source in progress

• Delivery expected no later than  
March 31st, 2018 in St. Petersburg

Delivery to LNGS
• Spring 2018

Physics

• 18 months of  
data taking

✔
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Capsule
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W SHIELD
March 2017

✔
✔
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Thanks


