Operational experience of J-PARC neutrino beam-line

NuFact2017, 2017/09/25 Ken Sakashita (KEK/J-PARC) for J-PARC neutrino facility

Contents

- · Introduction
- Recent beam operation status
- · Beam window replacement
- · Summary

J-PARC & Neutrino beam-line

T2K(Tokai-to-Kamioka) experiment

Long base-line neutrino oscillation experiment with muon (anti-)neutrino beam generated at J-PARC and detected at Super-Kamiokande

Physics motivation

- Physics motivation (after discovery of ν_{e} appearance) is
 - Lepton CPV •
 - · 2-3 mixing angle θ_{23} is maximal or not
 - $\nu_1 \text{ mass} < \nu_3 \text{ mass}$? (mass hierarchy) •
 - Check the 3-flavor mixing framework •
 - T2K latest results show hint of the lepton CPV
 - · CP conservation ($\delta = 0, \pi$) is excluded with 95% C.L.

Toward lepton CPV

Accumulate more data with improving the beam power

My talk : Operational experience of neutrino beam-line so far Next (Sekiguchi-san's) talk : Upgrade of J-PARC accelerator and neutrino beam-line toward 1.3MW

T2K neutrino beam

- Accelerator-based u beam
- ν energy is narrow with off-axis method L = 295km \rightarrow oscillation peak at 0.6GeV
- + ν / $\overline{\nu}$ can be switched by flipping horn polarity

Neutrino flux and its error

- u flux is calculated based on
- measurement of proton beam profile
- \cdot π , K yield measurements by CERN NA61/SHINE experiment

 Total absolute flux uncertainty is ~10% (similar size for anti-nu beam)
 Far-to-near extrapolation is also calculated

J-PARC Neutrino facility

Accumulated POT and beam power

Accumulated 14.7x10²⁰ POT for neutrino mode and 7.6 x 10²⁰ POT for ant-neutrino mode (total POT corresponds to 29% of the T2K approved POT)

Accumulated POT and beam power

470kW operation

- Power 471kW
- 3.1x10¹³ protons per bunch (ppb) x
 8 at injection
- · 2.44×10^{14} ppp @end of acc.
- Loss at MR ~800W which is less than the MR collimator limit
 - Loss at 3-50BT is 100W which is less than the 3-50BT collimator limit of 2kW
 - RF anode power supply tripped several times by the current limit. limited the beam power
 - Longitudinal instability happened frequently > 480kW

10¹³ protons

510kW trial

- Betatron tune (21.35, 21.45)
- 2nd harmonic rf

Extracted beam : 2.64 e14 ppp

Total beam loss $\sim 1.7 \text{ kW}$

	Protons per pulse	Bunch number	Repetition period (sec)	Beam power (kW)	Beam loss (kW)	Notes
1	2.64e14	8	2.48	511	1.7	measurement
2	2.64e14	8	1.16	1092	3.6	estimation

The MR has capability to achieve >1MW with the high repetition rate operation.

Also, we can successfully extract 510kW beam to

 ν beam-line without no major issues at ν beam-line

(S.Igarashi at NBI2017)

Accumulated POT and beam power

Primary beam-line

Beam orbit from the extraction to the target is controlled anytime to keep less beam loss

•

•

- Successfully handling the 470kW beam stably with less beam loss
- · residual dose is generally low (~10 μ Sv/h)
- high residual dose at most downstream of beam-line (~4.5mSv/h)
 - suspected source is back scattering from the collimator, target or beam window
 - remote maintenance of the beam-line equipment is necessary if we need some work just after the beam running
- Basically ready for high beam power up to
 750kW (several improvement needed for 1.3MW)

Target and horn

Target

- Graphite Φ26mm x 900mm long
- Designed to work at 750kW
- Replaced in 2013 when horn1 replaced
- He pipe leaked and repaired in 2015

- Three horns
- Operating (250kA) stably with no major trouble
- Replaced in 2013 with some improvements
- Needs three sets of new power supplies/

Both target and horn stably operated with 470kW Some improvement is necessary for 750kW and beyond (see Sekiguchi-san's talk)

Muon m

- Monitor the beam direction and intensity of muons every spill (every bunch)
- Stably operated with 470kW (good performance of direction and intensity measurement)
- Some problems are appearing as beam power increases
- new detector R&D is in progress

signal decrease (1%/ 5e20POT) was observed (could be radiation damage of Si. Under investigation)

Beam stability

 \cdot Proton beam position, angle and width at target is controlled to make the ν beam direction stable

Beam stability

- Event rate is stable ~1%
- Beam direction is stable within much better than 1mrad
 - Imrad corresponds to a 2% shift of peak ν energy at SK

Beam window replacement

- Beam window separates
 the proton beam-line
 vacuum and He vessel
- 0.3mm Ti, double layered,
 He flow in gap for cooling

Beam window replacement

- Initial beam window used since
 2009 until 2017
- The present beam window has been exposed to 2.2x10²¹ protons
 - It corresponds to 1.8DPA (displacement per atom)
- This value exceeds the existing measurement
- This motivates to replace the present beam window with new one for safe operation

Beam window replacement

- Since the beam window is activated, the replacement was performed with a remote maintenance scheme
- Successfully replaced with
 a new beam window
 - from visual inspection, some damage on the old beam window was found. Further investigation on going

Old beam window

Summary

- J-PARC MR and neutrino beam-line 470kW stable operation is achieved
 - \cdot there is no major issue
- · Beam window replacement was successfully performed
- Based on the operational experience so far, we plan to improve some beam-line equipment for future high beam power operation