The 19th International Workshop on Neutrinos from Accelerators NUFACT (2017)

Neutrino-nucleus scattering theory

Luis Alvarez Ruso

Introduction

 ν cross sections are crucial to achieve the precision goals of oscillation experiments

$$\frac{\int \sigma(E'_{\nu}) \Phi(E'_{\nu}) P(E_{\nu}|E'_{\nu}) P(E'_{\nu}) P(E'_{\nu}) P(E'_{\nu}) dE'_{\nu}}{\int \sigma(E'_{\nu}) \Phi(E'_{\nu}) P(E'_{\nu}) dE'_{\nu}}$$

- Need for theory?
 - Measurements are (cannot be) comprehensive
 - the same (semi)-inclusive cross section can correspond to different exclusive final states, depending on the reaction mechanism
 - measurements (partially) rely on simulations ~ theory to determine efficency, acceptance, ...
 - **E**_{ν} is not known; reconstructed using kinematics and/or calorimetry
- Neutrino-nucleus c.s. mismodeling could lead to unacceptably large systematic uncertainties or biased measurements Coloma, Huber, PRL 111 (2013)

L. Alvarez-Ruso, IFIC

F. Sanchez @ NuPhys2015

ν cross section theory HOWTO

- Multiscale problem (even at a given E_{ν})
- Perturbation theory is not aplicable (except close to thesholds and in the DIS regime)
- We rely on:
 - First principles: symmetries and basic properties of EW and strong int.
 - Phenomenological input: from photon, electron, meson (π) nucleon/nucleus scattering, decays, ...
 - **Validation from non-** ν reactions
- We study:
 - *v*-nucleon interactions: elastic, quasi-elastic, inelastic (mostly meson production, mostly resonant), deep inelastic
 - Nuclear effects
 - Multi-nucleon problem
 - initial state description: non-relativistic ab-initio calculations, spectral functions, mean fields, collective effects
 - **I** final state interactions: (relativistic) NN, π N, ...

ν cross section theory HOWTO

• Multiscale problem (even at a given E_{ν})

ν cross section theory HOWTO

- Multiscale problem (even at a given E_{ν})
- Perturbation theory is not aplicable (except close to thesholds and in the DIS regime)
- We rely on:
 - **First principles**: symmetries and basic properties of EW and strong int.
 - Phenomenological input: from photon, electron, meson (π) nucleon/nucleus scattering, decays, ...
 - **Validation** from non- ν reactions
- We study:
 - v-nucleon interactions: elastic, quasi-elastic, inelastic (mostly meson production, mostly resonant), deep inelastic
 - Nuclear effects
 - Multi-nucleon problem
 - initial state description: non-relativistic ab-initio calculations, spectral functions, mean fields, collective effects
 - **I** final state interactions: (relativistic) NN, π N, ...

ν QE scattering on the nucleon

$$\begin{array}{cccc}
\operatorname{CCQE} : \nu(k) + n(p) & \rightarrow & l^{-}(k') + p(p') \\
& \bar{\nu}(k) + p(p) & \rightarrow & l^{+}(k') + n(p') \\
\operatorname{NCE} : \nu(k) + N(p) & \rightarrow & \nu(k') + N(p') \\
& \bar{\nu}(k) + N(p) & \rightarrow & \bar{\nu}(k') + N(p') \\
\end{array}$$

$$\mathcal{M} = \frac{G_F \cos \theta_C}{\sqrt{2}} l^\alpha J_\alpha$$

where $l^{\alpha} = \bar{u}(k')\gamma^{\alpha}(1-\gamma_5)u(k)$ $J_{\alpha} = \bar{u}(p')\left[\gamma_{\alpha}F_1^V + \frac{i}{2M}\sigma_{\alpha\beta}q^{\beta}F_2^V + \gamma_{\mu}\gamma_5F_A + \frac{q_{\mu}}{M}\gamma_5F_P\right]u(p)$

Vector form factors: $F_{1,2}^V = F_{1,2}^p - F_{1,2}^n$ $G_E = F_1 + \frac{q^2}{2m_N}F_2 \quad \leftarrow \text{ electric}$ $G_M = F_1 + F_2 \quad \leftarrow \text{ magnetic}$

ν QE scattering on the nucleon

EM form factors from (e,e') scattering

Ye et al., arXiv:1707.09063

- World data fitted with a bounded polynomial z-expansion
- Radiative and two-photon exchange corrections
- **Dipole** behavior for $Q^2 \lesssim 1 \text{ GeV}^2$
 - (In principle) not theoretically justified
 - Exponential charge distributions (in the static limit)
 - In the VMD picture, a dipole might arise from two mesons with similar masses and opposite couplings

$$G_D = \left(1 + \frac{Q^2}{0.71 \,\mathrm{GeV}^2}\right)^{-2}$$

QE scattering on the nucleon

Dipole ansatz:

$$F_A(Q^2) = g_A \left(1 + \frac{Q^2}{M_A^2}\right)^{-2} \qquad \langle r_A^2 \rangle = \frac{12}{M_A^2}$$

(In principle) not theoretically justified

- Leads to artificially small errors in M_A
- z-expansion Meyer et al., PRD 93 (2016) : Fit to ANL, BNL, FNAL data

QE scattering on the nucleon

<r_A²> = 0.46(22) fm² vs 0.453(12) fm² Bodek et al., EPJC 53 (2008)
 At E_v ~ 1 GeV σ (CCQE) has ≈ 10 % error
 More precise information about F_A is needed

Lattice QCD

g_A : lower than exp. values have been recurrently obtained

Constantinou, PoS CD15 (2015) 009

Recent progress:

improved algorithms for a careful treatement of excited states

Iow pion masses

Alexandrou et al., Phys. Rev. D 96 (2017) Capitani et al., arXiv:1705.06186 Gupta, arXiv:1705.06834

Recent progress:

Alexandrou et al., Phys. Rev. D 96 (2017) Capitani et al., arXiv:1705.06186 Gupta et al., arXiv:1705.06834

Baryon ChPT analysis: Yao, LAR, Vicente Vacas, arXiv:1708.0877

■ O(p³), Q² < 0.36 GeV², 130 MeV < M_{π} < 473 MeV, explicit Δ (1232)

Recent progress:

Alexandrou et al., Phys. Rev. D 96 (2017) Capitani et al., arXiv:1705.06186 Gupta et al., arXiv:1705.06834

Baryon ChPT analysis: Yao, LAR, Vicente Vacas, arXiv:1708.0877

■ O(p³), Q² < 0.36 GeV², 130 MeV < M_{π} < 473 MeV, explicit Δ (1232)

L. Alvarez-Ruso, IFIC

Recent progress:

Alexandrou et al., Phys. Rev. D 96 (2017) Capitani et al., arXiv:1705.06186 Gupta et al., arXiv:1705.06834

- Baryon ChPT analysis: Yao, LAR, Vicente Vacas, arXiv:1708.0877 ■ O(p³), Q² < 0.36 GeV², 130 MeV < M_{π} < 473 MeV, explicit Δ (1232)
 - \blacksquare g_A = 1.237(74) , <r_A²> = 0.263(38) fm²
- Improvements:
 - **BChPT**: O(p⁵) might be needed to improve M_{π} dependence
 - LQCD: excited states and finite volume corrections
 - Critical to reliably obtain F_A in LQCD

QE scattering on the nucleon

 $< r_A^2 > = 0.46(22) \text{ fm}^2 \text{ vs} 0.453(12) \text{ fm}^2 \text{ Bodek et al., EPJC 53 (2008)}$ At $E_{\nu} \sim 1 \text{ GeV } \sigma(\text{CCQE}) \text{ has } \approx 10 \% \text{ error}$

- More precise information about F_A is needed
 - Lattice QCD

Direct or indirect CCQE measurement on n/p

CCQE production of hyperons

 $\bar{\nu}(k) + p(p) \rightarrow l^+(k') + \Lambda, \Sigma^0(p')$ $\bar{\nu}(k) + n(p) \rightarrow l^+(k') + \Sigma^-(p')$

Singh, Vicente Vacas, PRD74 (2006)

$$\mathcal{M} = \frac{G_F \sin \theta_C}{\sqrt{2}} l^{\alpha} J_{\alpha} \qquad J_{\alpha} = \mathcal{V}_{\alpha} - \mathcal{A}_{\alpha}$$

$$\mathcal{V}^{\alpha} = \bar{u}_{Y}(p') \left[\gamma^{\alpha} f_{1} + \frac{i}{M + M_{Y}} \sigma^{\alpha\beta} q_{\beta} f_{2} + \frac{q^{\alpha}}{M_{Y}} f_{3} \right] u(p)$$

$$\mathcal{A}^{\alpha} = \bar{u}_{Y}(p') \left[\gamma^{\alpha} \gamma_{5} g_{1} + \frac{i}{M + M_{Y}} \sigma^{\alpha\beta} q_{\beta} \gamma_{5} g_{2} + \frac{q^{\mu}}{M_{Y}} \gamma_{5} g_{3} \right] u(p)$$

SU(3) symmetry: $f_3 = g_2 = 0$, $f_{1,2} \Leftrightarrow F_{1,2}$, $g_{1,3} \Leftrightarrow F_{A,P}$

- SU(3) breaking corrections can be studied with ChPT Zhu, Puglia, Ramsey-Musolf, PRD63 (2001)
- Source of pions: $Y \rightarrow N \pi$

CCQE production of hyperons

 $\bar{\nu}(k) + p(p) \rightarrow l^+(k') + \Lambda, \Sigma^0(p')$ $\bar{\nu}(k) + n(p) \rightarrow l^+(k') + \Sigma^-(p')$

Singh, Vicente Vacas, PRD74 (2006)

$$\mathcal{M} = \frac{G_F \sin \theta_C}{\sqrt{2}} l^{\alpha} J_{\alpha} \qquad J_{\alpha} = \mathcal{V}_{\alpha} - \mathcal{A}_{\alpha}$$

$$\mathcal{V}^{\alpha} = \bar{u}_{Y}(p') \left[\gamma^{\alpha} f_{1} + \frac{i}{M + M_{Y}} \sigma^{\alpha\beta} q_{\beta} f_{2} + \frac{q^{\alpha}}{M_{Y}} f_{3} \right] u(p)$$

$$\mathcal{A}^{\alpha} = \bar{u}_{Y}(p') \left[\gamma^{\alpha} \gamma_{5} g_{1} + \frac{i}{M + M_{Y}} \sigma^{\alpha\beta} q_{\beta} \gamma_{5} g_{2} + \frac{q^{\mu}}{M_{Y}} \gamma_{5} g_{3} \right] u(p)$$

SU(3) symmetry: $f_3 = g_2 = 0$, $f_{1,2} \Leftrightarrow F_{1,2}$, $g_{1,3} \Leftrightarrow F_{A,P}$

- SU(3) breaking corrections can be studied with ChPT Zhu, Puglia, Ramsey-Musolf, PRD63 (2001)
- Source of pions: $Y \rightarrow N \pi$
- Establishing priorities (in a quantitative way) is very important

L. Alvarez-Ruso, IFIC

NuFact 2017

1π production on the nucleon

 $\nu_l N \to l \pi N'$

• CC:
$$\nu_{\mu} p \rightarrow \mu^{-} p \pi^{+}, \quad \overline{\nu}_{\mu} p \rightarrow \mu^{+} p \pi^{-}$$

 $\nu_{\mu} n \rightarrow \mu^{-} p \pi^{0}, \quad \overline{\nu}_{\mu} p \rightarrow \mu^{+} n \pi^{0}$
 $\nu_{\mu} n \rightarrow \mu^{-} n \pi^{+}, \quad \overline{\nu}_{\mu} n \rightarrow \mu^{+} n \pi^{-}$

source of CCQE-like events (in nuclei)

needs to be subtracted for a good E_{ν} reconstruction

$$\begin{array}{l} \text{NC:} \quad \nu_{\mu} \, p \to \nu_{\mu} \, p \, \pi^{0}, \qquad \overline{\nu}_{\mu} \, p \to \overline{\nu}_{\mu} \, p \, \pi^{0} \\ \nu_{\mu} \, p \to \nu_{\mu} \, n \, \pi^{+}, \qquad \overline{\nu}_{\mu} \, n \to \overline{\nu}_{\mu} \, n \, \pi^{0} \\ \nu_{\mu} \, n \to \nu_{\mu} \, n \, \pi^{0}, \qquad \overline{\nu}_{\mu} \, n \to \overline{\nu}_{\mu} \, n \, \pi^{0} \\ \nu_{\mu} \, n \to \nu_{\mu} \, p \, \pi^{-}, \qquad \overline{\nu}_{\mu} \, n \to \overline{\nu}_{\mu} \, p \, \pi^{-} \end{array}$$

 \blacksquare e-like background to $\nu_{\mu} \rightarrow \nu_{e}$ (T2K)

1π production on the nucleon

 $\nu_l N \to l \pi N'$

From Chiral symmetry:

Hernandez et al., Phys.Rev. D76 (2007) 033005

Weak resonance excitation

• Δ (1232) excitation:

■ N-<u></u> transition current:

$$J^{\mu} = \bar{\psi}_{\mu} \left[\left(\frac{C_{3}^{V}}{M} (g^{\beta\mu} \not{\!\!\!}q - q^{\beta} \gamma^{\mu}) + \frac{C_{4}^{V}}{M^{2}} (g^{\beta\mu} q \cdot p' - q^{\beta} p'^{\mu}) + \frac{C_{5}^{V}}{M^{2}} (g^{\beta\mu} q \cdot p - q^{\beta} p^{\mu}) \right) \gamma_{5} \right] + \frac{C_{3}^{A}}{M} (g^{\beta\mu} \not{\!\!\!}q - q^{\beta} \gamma^{\mu}) + \frac{C_{4}^{A}}{M^{2}} (g^{\beta\mu} q \cdot p' - q^{\beta} p'^{\mu}) + C_{5}^{A} g^{\beta\mu} + \frac{C_{6}^{A}}{M^{2}} q^{\beta} q^{\mu} \right] u$$

Vector form factors

extracted from data on π photo- and electro-production

L. Alvarez-Ruso, IFIC

NuFact 2017

Weak resonance excitation

■ <u>⊿(1232)</u> J^P=3/2⁺

$$J_{\alpha} = \bar{u}^{\mu}(p') \left[\left(\frac{C_{3}^{V}}{M_{N}} (g_{\alpha\mu} \not{q} - q_{\alpha} \gamma_{\mu}) + \frac{C_{4}^{V}}{M_{N}^{2}} (g_{\alpha\mu} q \cdot p' - q_{\alpha} p'_{\mu}) + \frac{C_{5}^{V}}{M_{N}^{2}} (g_{\alpha\mu} q \cdot p - q_{\alpha} p_{\mu}) \right) \gamma_{5} \right. \\ \left. + \frac{C_{3}^{A}}{M_{N}} (g_{\alpha\mu} \not{q} - q_{\alpha} \gamma_{\mu}) + \frac{C_{4}^{A}}{M_{N}^{2}} (g_{\alpha\mu} q \cdot p' - q_{\beta} p'_{\mu}) + C_{5}^{A} g_{\alpha\mu} + \frac{C_{6}^{A}}{M_{N}^{2}} q_{\alpha} q_{\mu} \right] u(p)$$

Axial form factors

$$\begin{split} C_5^A(0) &= \sqrt{\frac{2}{3}} g_{\Delta N\pi} &\leftarrow \text{off diagonal Goldberger-Treiman relation} \\ \mathcal{L}_{\Delta N\pi} &= -\frac{g_{\Delta N\pi}}{f_{\pi}} \bar{\Delta}_{\mu} (\partial^{\mu} \vec{\pi}) \vec{T}^{\dagger} N \qquad g_{\Delta N\pi} \Leftrightarrow \Gamma(\Delta \to N\pi) \end{split}$$

Deviations from GTR arise from chiral symmetry breaking

expected only at the few % level

Reconciling GTR with the ANL and BNL data on $u_{\mu} \, d
ightarrow \mu^{-} \, \pi^{+} \, p \, n$

Unitarization in the leading vector and axial multipoles

LAR, Hernandez, Nieves, Vicente Vacas, PRD 93 (2016)

L. Alvarez-Ruso, IFIC

Strategy:

- Resonant + non-resonant amplitudes added coherently
- Unitarization (in coupled channels)
- Consistency with πN and $\gamma(*)N$ reactions
- E.g.: Dynamical Coupled Channel (DCC) Model Nakamura et al., PRD92 (2015)
 - Based on a combined analysis of πN , $\gamma(*)N \rightarrow \pi N$, ηN , KA, $K\Sigma$

Strategy:

- Resonant + non-resonant amplitudes added coherently
- Unitarization (in coupled channels)
- Consistency with πN and $\gamma(*)N$ reactions
- E.g.: Dynamical Coupled Channel (DCC) Model Nakamura et al., PRD92 (2015)

Strategy:

- Resonant + non-resonant amplitudes added coherently
- Unitarization (in coupled channels)
- Consistency with πN and $\gamma(*)N$ reactions
- E.g.: Dynamical Coupled Channel (DCC) Model Nakamura et al., PRD92 (2015)
 - Based on a combined analysis of πN , $\gamma(*)N \rightarrow \pi N$, ηN , KA, $K\Sigma$

Strategy:

- Resonant + non-resonant amplitudes added coherently
- Unitarization (in coupled channels)
- Consistency with πN and $\gamma(*)N$ reactions
- E.g.: Dynamical Coupled Channel (DCC) Model Nakamura et al., PRD92 (2015)
 - Based on a combined analysis of πN , $\gamma(*)N \rightarrow \pi N$, ηN , KA, $K\Sigma$

L. Alvarez-Ruso, IFIC

Local Fermi Gas

$$p_F(r) = [\frac{3}{2}\pi^2 \rho(r)]^{1/3}$$

Space-momentum correlations absent in the GFG

Spectral functions

$$D(p) = (\not p + M)G(p)$$

$$G(p) = \frac{1}{p^0 + E_p - i\epsilon} \left[\int_{-\infty}^{\mu} \frac{\mathcal{A}_h(\omega, \vec{p})}{p^0 - \omega - i\epsilon} d\omega + \int_{\mu}^{\infty} \frac{\mathcal{A}_p(\omega, \vec{p})}{p^0 - \omega + i\epsilon} d\omega \right]$$

$$\mathcal{A}_{p,h}(p) = \mp \frac{1}{\pi} \frac{\mathrm{Im}\Sigma(p)}{[p^2 - M^2 - \mathrm{Re}\Sigma(p)]^2 + [\mathrm{Im}\Sigma(p)]^2}$$

 $\blacksquare Im \Sigma = 0 \Rightarrow mean-field$

• Modification of the $\Delta(1232)$ properties in the medium

$$D_{\Delta} \Rightarrow \tilde{D}_{\Delta}(r) = \frac{1}{(W + M_{\Delta})(W - M_{\Delta} - \operatorname{Re}\Sigma_{\Delta}(\rho) + i\tilde{\Gamma}_{\Delta}/2 - i\operatorname{Im}\Sigma_{\Delta}(\rho))}$$

 $\tilde{\Gamma}_{\Delta} \leftarrow$ Free width $\Delta \rightarrow N \pi$ modified by Pauli blocking

$$\operatorname{Re}\Sigma_{\Delta}(\rho) \approx 40 \operatorname{MeV} \frac{\rho}{\rho_0} \qquad \operatorname{Im}\Sigma_{\Delta}(\rho) \leftarrow \begin{array}{c} \bullet \Delta \operatorname{N} \to \operatorname{N} \operatorname{N} \\ \bullet \Delta \operatorname{N} \to \operatorname{N} \operatorname{N} \pi \\ \bullet \Delta \operatorname{N} \operatorname{N} \to \operatorname{N} \operatorname{N} \operatorname{N} \end{array}$$

GiBUU Leitner, LAR, Mosel, PRC 73 (2006)

Effects of FSI on pion kinetic energy spectra

- **\blacksquare** strong absorption in Δ region
- **side-feeding from dominant** π^+ **into** π^{o} **channel**
- secondary pions through FSI of initial QE protons

Comparison to MiniBooNE: $CC1\pi^0$ Aguilar-Arevalo, PRD83 (2011)

Hernandez et al., PRD87 (2013)

Lalakulich, Mosel, PRC87 (2013)

NuFact 2017

Photon emission in NC interactions

- on nucleons $\nu(\bar{\nu}) \, N o \nu(\bar{\nu}) \, \gamma \, N$
- on nuclei $u(ar{
 u}) \, A o
 u(ar{
 u}) \, \gamma \, X \quad \leftarrow ext{ incoherent }$
 - $u(ar
 u)\,A o
 u(ar
 u)\,\gamma\,A \quad \leftarrow ext{coherent}$

Important background for $\nu_{\mu} \rightarrow \nu_{e}$ studies (θ_{13} , δ) if γ is misidentified as e^{\pm} from CCQE $\nu_{e} n \rightarrow e^{-} p$ or $\overline{\nu}_{e} p \rightarrow e^{+} n$

R. Hill, PRD 81 (2010) Zhang & Serot, PRC 86 (2012) Wang, LAR, Nieves, PRC 89 (2014)

MiniBooNE anomaly

• e-like events in the MiniBooNE $\nu_{\mu} \rightarrow \nu_{e}$ / $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ search:

Aguilar-Arevalo et al., PRL110 (2013) 161801

NuFact 2017

NC_y events at MiniBooNE

Comparison to the MiniBooNE estimate

Resonance model (R&S) tuned to π production data

 $\blacksquare \ \textbf{Only} \ \textbf{R} \to \textbf{N} \ \gamma$

NCγ : insufficient to explain the excess of e-like events at MiniBooNE

Same conclusion as Zhang, Serot, PLB 719 (2013)

NC_y events at MiniBooNE

- Origin of e-like event excess @ MiniBooNE
 - Oscillations: not explained by 1, 2, 3 families of sterile neutrinos
 - J. Conrad et al., Adv. High Energy Phys. 2013, C. Giunti et al., PRD88 (2013)
 - Even after taking into account multi-nucleon interactions in E_{ν} reconstruction Ericson et al., Phys.Rev. D93 (2016)
 - Heavy (~ 50 MeV) u produced weakly or EM, followed by $u_{\rm h}
 ightarrow \gamma$
 - S. Gninenko, PRL 103 (2009), M. Masip et al, JHEP 1301 (2013)

$\nu_{\rm h}$ production and radiative decay

• on nucleons $\nu_{\mu}(\bar{\nu}_{\mu}) N \rightarrow \nu_{h}(\bar{\nu}_{h}) N$

• on nuclei $u_{\mu}(\bar{\nu}_{\mu}) A o
u_{h}(\bar{\nu}_{h}) A \leftarrow ext{coherent}$ $\nu_{\mu}(\bar{\nu}_{\mu}) A o
u_{h}(\bar{\nu}_{h}) X \leftarrow ext{incoherent}$

ν_h= Dirac ν with m ≈ 50 MeV, slightly mixed with ν_μ
 A =¹²C (MiniBooNE, CH₂), ⁴⁰Ar (SBN program: SBND, MicroBooNE, Icarus) LAR, E. Saúl Sala, in preparation, arXiv:1705.00353

L. Alvarez-Ruso, IFIC

Events @ MiniBooNE

 ν mode

 $\mathbf{I} \, \overline{\boldsymbol{
u}} \,$ mode

LAR, E. Saúl Sala, in preparation, arXiv:1705.00353

L. Alvarez-Ruso, IFIC

NuFact 2017

1.0

1.0

40

30

20

10

0

-10

Events @ MicroBooNE

 ν mode

SM prediction LAR & Wang

Not covered in this talk

- ν -nucleus QE(-like) scattering
 - MiniBooNE CCQE measurement actually contained a sizable contribution from 2p2h (Martini, ...)
 - **I**mplications for E_{ν} reconstruction
 - WG2: Lovato, González Jiménez, Barbaro, Rocco, Sobczyk
 - WG2 Summary

Not covered in this talk

Not covered in this talk

- *v*-nucleus QE(-like) scattering
 - MiniBooNE CCQE measurement actually contained a sizable contribution from 2p2h (Martini, ...)
 - **I**mplications for E_{ν} reconstruction
 - WG2: Lovato, González Jiménez, Barbaro, Rocco, Sobczyk
 - WG2 Summary
- Shallow and Deep inelastic scattering
 - Onset of DIS: usually W>2 GeV, Q² > 1 GeV²
 - At lower W, Q² : higher twists
 - Non trivial RES → DIS transition
 - Hadronization model needed to describe exclusive hadron production
 - Nuclear corrections

Final Word

NuSTEC: Neutrino Scattering Theory Experiment Collaboration http://nustec.fnal.gov/

NuSTEC White Paper: Status and Challenges of Neutrino-Nucleus Scattering, LAR et al., arXiv:1706.03621

NuSTEC Training in Neutrino-Nucleus Scattering Physics 2017 http://nustec.fnal.gov/school2017/

Fermilab, November 7-15, 2017

Theory lectures (mainly) for (young) experimentalists