## **The ENUBET project**

### High Precision Neutrino Flux Measurements in Conventional Neutrino Beams

F. Pupilli (INFN-Padova)

on behalf of the ENUBET Collaboration

#### Outline

- The problem of flux uncertainty in conventional beams → monitored beams
- Challenges, goals and recent achievements for ENUBET
- Forthcoming activities and conclusions



#### NUFACT2017



Uppsala, 25-30 September 2017



This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 681647).

# Neutrino cross sections and flux uncertainties

- An important ingredient for the success of the future neutrino oscillation experiments is the **precise knowledge of**  $\sigma(v)$
- σ(ν<sub>μ</sub>)

✓ Remarkable progress in the last 10 years (MiniBooNE, SCIBooNE, T2K, MINERvA, NOvA...)

- ✓ But still no absolute measurements below 7-10%
- σ(ν<sub>e</sub>)
  - $\checkmark \sigma(v_{\mu}) \leftrightarrow \sigma(v_{e})$  delicate @ low energies



- ✓ No intense/pure source of GeV  $v_e$  available (using the **beam contamination**)
- Main limiting factor: syst. uncertainties in the initial flux determination





# **Monitored neutrino beams**



A direct measurement of neutrino fluxes based on conventional technologies

Kaon-based monitored neutrino beams can provide a **pure and precise** (O(1%))  $v_e$  source:



- Monitoring the decays in which v are produced
- Get rid of systematics from PoT, hadro-production, beam-line efficiency





### The conceptual design: ENUBET

- Hadron beamline: charge selection, focusing, fast transfer of  $K^+/\pi^+$
- Tagger: real-time, «inclusive» monitoring of K decay products



- Thanks to the short decay tunnel, muon decay gives a negligible contribution to the v<sub>e</sub> flux that is dominated (~98%) by neutrinos coming from K<sub>e3</sub> decays
- Only kaon decay products are measured in the tagger, since pions and muons decay at small angles

**Complete control on v<sub>e</sub> flux** 

Tolerable rates / detector irradiation
 (< 500 kHz/cm2 , < 1 kGy)</li>

#### et Det

### **ENUBET:** Enhanced NeUtrino BEam from kaon Tagging

#### http://enubet.pd.infn.it

Project approved by the European Research Counsil (ERC) 5 years duration (06/2016 – 06/2021) Overall budget: 2 MEUR

ERC-Consolidator Grant-2015, n° 681647 (PE2) P.I: **A. Longhin** Host Institution: INFN

> Expression of interest (CERN-SPSC, Oct. 2016)

#### 41 physicist, 10 institutions:

CERN, IN2P3 (Bordeaux), INFN (Bari, Bologna, Insubria, Milano-Bicocca, Napoli, Padova, Roma-I)

# Bibliography Longhin, L. Ludovici, F. Terranova, Eur. Phys. J. C75 (2015) 155 A. Berra et al., NIM A824 (2016), 693 A. Berra et al., NIM A830 (2016), 345 CERN-SPSC-2016-036; SPSC-EOI-014

A. Berra<sup>a,b</sup>, M. Bonesini<sup>b</sup>, C. Brizzolari<sup>a,b</sup>, M. Calviani<sup>m</sup>, M.G. Catanesi<sup>l</sup>,
S. Cecchini<sup>c</sup>, F. Cindolo<sup>c</sup>, G. Collazuol<sup>k,j</sup>, E. Conti<sup>j</sup>, F. Dal Corso<sup>j</sup>, G. De Rosa<sup>p,q</sup>,
A. Gola<sup>o</sup>, R.A. Intonti<sup>l</sup>, C. Jollet<sup>d</sup>, M. Laveder<sup>k,j</sup>, A. Longhin<sup>j(\*)</sup>, P.F. Loverre<sup>n,f</sup>,
L. Ludovici<sup>f</sup>, L. Magaletti<sup>l</sup>, G. Mandrioli<sup>c</sup>, A. Margotti<sup>c</sup>, N. Mauri<sup>c</sup>, A. Meregaglia<sup>d</sup>,
M. Mezzetto<sup>j</sup>, M. Nessi<sup>m</sup>, A. Paoloni<sup>e</sup>, L. Pasqualini<sup>c,g</sup>, G. Paternoster<sup>o</sup>, L. Patrizii<sup>c</sup>,
C. Piemonte<sup>o</sup>, M. Pozzato<sup>c</sup>, M. Prest<sup>a,b</sup>, F. Pupilli<sup>e</sup>, E. Radicioni<sup>l</sup>, C. Riccio<sup>p,q</sup>,
A.C. Ruggeri<sup>p</sup>, G. Sirri<sup>c</sup>, F. Terranova<sup>b,h</sup>, E. Vallazza<sup>i</sup>, L. Votano<sup>e</sup>, E. Wildner<sup>m</sup>

#### In the CERN Neutrino Platform (NP03, PLAFOND)

F. Pupilli - ENUBET



## **Constraining v fluxes**

### $\mathbf{v}_{\mathrm{e}}$ flux

- K<sub>e3</sub> (golden sample)
  - π+/π<sup>0</sup> from K<sup>+</sup> can mimic an e<sup>+</sup>
     e/π discrimination through:
    - I. Longitudinal profile of showers
    - II. Vertex reconstruction by timing
- Non K<sub>e3</sub> (silver sample): exploitable, additional systematics only from K B.R.

### $v_{\mu}$ flux

- Kaons well constrained by the tagger (both from K<sub>e3</sub> and hadronic decay rates)
- $v_{\mu}$  from K can be selected at the nu\_detector using radius-energy correlations  $\rightarrow$  High precision  $\sigma(v_{\mu})$

$$\begin{split} & K^{+} \rightarrow e^{+} \nu_{e} \pi^{0} (5.1\%) \\ & K^{+} \rightarrow \pi^{+} \pi^{0} (20.7\%) \\ & K^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-} (5.6\%) \\ & K^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0} (1.8\%) \\ & K^{+} \rightarrow \mu^{+} \nu_{\mu} (63.6\%) \\ & K^{+} \rightarrow \mu^{+} \nu_{\mu} \pi^{0} (3.3\%) \end{split}$$





# Hadron beam-line scenarios

#### Baseline choice: magnetic horns focusing

- Tagger rate limit (~500 kHz/cm<sup>2</sup>) reached with ~10<sup>12</sup> PoT/spill
- Horn pulsing limit:  $t_{impulse} < O(1-10) \text{ ms}$ • Needs for  $10^4 v_e^{CC}$  in a 500 t v-det at 100 m: ~ $10^{20} \text{ PoT}$  a fraction of a year run at present proton drivers ~ $10^8 \text{ spills}$  challenging/unconventional Solution: multi-Hz slow resonant extraction + horn pulsing  $\rightarrow$  machine studies at SPS

#### Alternative choice: static focusing + long extraction



# **Horn focusing**



- Realistic implementation of the beam-line/focusing layout
- Site independent. We are considering existing proton driver energies
- FLUKA/G4Beamline (+ Transport for optics optimization) simulations in progress
- Assess beam-related backgrounds



### **Static focusing**



- Used the same simulation machinery as in the horn option (FLUKA + G4Beamline+Transport)
- More promising configuration: Quadrupole triplet + Dipole + Quadrupole triplet
- **Compact beam-line:** ~28 m length



### **Neutrino samples**



- Need good e-tagging capabilities, like:
  - ICARUS/µBOONE @ FNAL
  - Proto-DUNE SP/DP @ CERN
  - Water Cerenkov (e.g. E61 @ JPARC)
- Assumed a 500 t LAr det (6×6×10 m<sup>3</sup>) @ 100 m

| E <sub>p</sub> (GeV) | PoT (10 <sup>20</sup> ) for 10 <sup>4</sup><br>v <sub>e</sub> <sup>CC</sup> (on-axis) | Run duration<br>(w/ nominal int) |
|----------------------|---------------------------------------------------------------------------------------|----------------------------------|
| 30                   | 1.03                                                                                  | ~ 0.2 JPARC y                    |
| 120                  | 0.24                                                                                  | ~ 0.4 NUMI y                     |
| 400                  | 0.11                                                                                  | ~ 0.25 CNGS y                    |

- Reference design better suited for multi-GeV (e.g. DUNE)
- Hyper-K r.o.i accessible in off-axis configuration, but larger exposures needed
- Studying the possibility to reduce the initial hadron momentum
- Can exploit also  $v_{\mu}$  from  $\pi$  (~10<sup>5</sup> @ low E), estimating the initial  $\pi$  flux with BCT and K constraint from the tagger  $\rightarrow$  to be investigated



Event rates. 0.5 kt, 1.0e+20 pot, L=0.1 km



# Systematics on the $v_e$ flux

**Positron tagging** eliminates the most important contributions. Assessing in detail the **viability of the 1% systematics** on the flux is one of the final goals of ENUBET. Full analysis is being setup profiting from a **detailed simulation** of the beamline, the tagger and inputs from **test beams**.

| Source of uncertainty          | Estimate                                                                        |  |
|--------------------------------|---------------------------------------------------------------------------------|--|
| statistical error              | <1% (10 <sup>4</sup> v <sub>e</sub> <sup>CC</sup> )                             |  |
| kaon production yield          | irrelevant (positron tag)                                                       |  |
| number of integrated PoT       | irrelevant (positron tag)                                                       |  |
| secondary transport efficiency | irrelevant (positron tag)                                                       |  |
| branching ratios               | negligible + only enter in bkg estimation                                       |  |
| 3-body kinematics and mass     | <0.1%                                                                           |  |
| phase space at the entrance    | to be checked with low intensity pion runs                                      |  |
| $v_e^{}$ from $\mu$ -decay     | constrain $\mu$ from K by the tagger and $\mu$ from $\pi$ by low intensity runs |  |
| e/π separation                 | being checked directly at test beams                                            |  |

NUFACT 2017 - 26/09/2017



2) Integrated  $\gamma$ -veto



### 1) Calorimeter ("shashlik")

- Ultra Compact Module (UCM)
   (Plastic scint. + Fe absorbers)
- Integrated light readout with SiPM

 $\rightarrow e^{+}/\pi^{\pm}/\mu$  separation

### 2) Integrated γ-veto

- Rings of 3×3 cm<sup>2</sup> pads of plastic scintillator
  - $\rightarrow \pi^0$  rejection



Ultra Compact Module  $3 \times 3 \times 10 \text{ cm}^3 - 4.3 \text{ X}_0$ 

1) Compact calorimeter with

longitudinal segmentation

First milestone: build/test a scalable demonstrator consisting of a 3 m long section of the instrumented tunnel by 2021

### Simulation of the decay tunnel and event reconstruction

- Full GEANT4 simulation of the instrumented tunnel
- "Event building": clustering of energy deposits based on position and timing of signal waveforms in UCM, with realistic treatment of background (up to 500 kHz/cm<sup>2</sup>!). Pile-up effects fully included
- Multivariate analysis exploiting the pattern of the energy deposition in the calorimeter to select e+ and simultaneously reject  $\pi^+$  and  $\pi^0$



Instrumentig the decay tunnel at 1 m radius allow e<sup>+</sup> ID with ~25% efficiency (~50% purity)

### Calorimeter prototype performances with test beam data

- **TB @ CERN-PS T9** beamline (Nov. 16)
- 56 UCM arranged in 7 longitudinal blocks (~30 X<sub>0</sub>) + had. layer (coarse sampling) at grazing incidence (oriantable cradle)
- e/μ tagged with Cherenkov counters and a muon catcher







### **Doses and radiation damage**

- Neutron and ionizing doses have been studied for a tagger radius of 40, 80 and 100 cm with FLUKA and cross-checked with GEANT4
- Choosing 100 cm allows ~2 x 10<sup>11</sup> n 1MeV-eq/cm<sup>2</sup> and ~0.05 kGy in the innermost layers in the detector lifetime
- Test irradition with 1-3 MeV neutrons performed at INFN-LNL CN Van de Graaff on 12-27 June 2017. Characterization of rad-hard SiPM with 12-15-20 μm cell size (FBK, SensL) through I-V curves







# **R&D** activities

#### Intense test beam activity @ CERN-PS T9

- Achieve recovery time <~10 ns (to cope with pile-up)
- Test of custom digitizers electronics
- Photon veto prototypes with plastic scintillators
- Scalable/reproducible technological solutions
  - ✓ water-jet holes machining for absorbers



- ✓ Molded scintillators (a prototype calorimeter tested in July 17 @ T9, analysis on-going)
- ✓ **Polysiloxane scintillators** (a 12 X<sub>0</sub> calorimeter will be tested @ **T9 in october**)

First application in HEP!







In about one year ENUBET moved from a conceptual study to a concrete Reference Design

| Item                                  | baseline option                                        | alternatives                                | status                                  |
|---------------------------------------|--------------------------------------------------------|---------------------------------------------|-----------------------------------------|
| Proton extraction                     | Few ms spills at O(10) Hz<br>during the flat top (2 s) | Single slow extraction                      | Not tested yet                          |
| Focusing                              | Horn based                                             | Quadrupole based                            | Optimization ongoing                    |
| Transfer line                         | Quad+dipoles                                           |                                             | Full simulation ongoing                 |
| Detector for e/π<br>separation        | Shashlik calorimeter with<br>SiPM readout              | Polysiloxane scint.<br>Non-shashlik readout | Full simulation and prototyping ongoing |
| Photon veto                           | Scint. Pads with fiber readout                         | Direct readout<br>LAPPD                     | Full simulation and prototyping ongoing |
| Particle ID and detector optimization | 3×3×10 cm <sup>3</sup> UCM                             | Different radii and granularities           | Full simulation and prototyping ongoing |
| Systematic assessment                 | Positron monitoring<br>(Ke3 decay)                     | Enhanced exploting other K decay modes      | Just started                            |

# **Conclusions**



- Flux systematics could be reduced by one order of magnitude exploiting  $K \rightarrow e + v_e \pi^0$
- In the next 4 years ENUBET will investigate the feasibility of this approach and of its application to a new generation of cross section experiments at CERN, FNAL or JPARC providing σ(v<sub>e</sub>) at 1% with a detector of moderate mass (500 t)
- The intriguing possibility of a time-tagged facility will be also studied
- 1<sup>st</sup> year of project: a rich simulation and prototyping program is giving very promising results. Challenging open items ahead. But no showstoppers so far

