

Latest Sterile Neutrino Results from MINOS+ & Combined Analysis with Daya Bay and Bugey-3

Andy Blake, Lancaster University (for the MINOS+ collaboration)

NuFact Conference, Uppsala University Tuesday 26th September, 2017

Overview

- The MINOS & MINOS+ experiments
- Beyond three flavours
 > 3+1 sterile model
- Searching for sterile v's in MINOS & MINOS+
 - $\succ v_{\mu}$ disappearance
 - $\succ v_{\mu} \rightarrow v_{e}$ appearance
- Combined analysis with Daya Bay & Bugey-3

Argonne · Athens · Brookhaven · Caltech · Cambridge · Campinas · Cincinnati · Fermilab · Goiás · Harvard · Holy Cross · Houston · IIT · Indiana · Iowa State · Lancaster · Manchester · Minnesota-Twin Cities · Minnesota-Duluth · Otterbein · Oxford · Pittsburgh · Rutherford · São Paulo · South Carolina · Stanford · Sussex · Texas A&M · Texas-Austin · Tufts · UCL · Warsaw · William & Mary

The MINOS/MINOS+ Experiments

Far Detector (Soudan mine)

735 km from beam target 5.4 kton mass

Near Detector (Fermi Laboratory)

1 km from beam target 1 kton mass

- The MINOS (2005-12) and MINOS+ (2013-16) experiments represent more than a decade of long-baseline neutrino physics.
 - ➤ Precision measurements of standard three-flavour oscillations.
 - Searches for new phenomena beyond standard oscillations.
- Experiment is now over, but data analysis continues. Latest results are based on a combined analysis of MINOS with ~50% of MINOS+ data.

The NuMI Accelerator Beam

MINOS & MINOS+ Data

MINOS & MINOS+ collected >25×10²⁰ POT accelerator neutrino data during 11 years of operation.

The MINOS Detectors

MINOS/MINOS+ Near and Far Detectors were functionally similar.

- Segmented, sampling, tracking steel/scintillator calorimeters.
- Magnetised with ~1.2T field for charge-sign determination.
- Each detector measured energy spectrum and flavour composition of NuMI beam.
 - \succ v_µ CC, v_e CC and NC interactions were identified and measured using event topology and calorimetry.
- Neutrino oscillations studied by combining information from both detectors.
 - ➤ Cancellation of systematics.
- Far Detector also collected 60 kton-years atmospheric neutrino data.

Neutrino Interactions

Andy Blake, Lancaster University

Standard Oscillations

Latest standard oscillation results are based on a combined analysis of accelerator and atmospheric data from MINOS and MINOS+.

- > Neutrinos, antineutrinos, v_{μ} disappearance, $v_{\mu} \rightarrow v_{e}$ appearance.
- ➤ Analysis includes 48 kton-years atmospheric neutrino data.

Observed data are well-described by three-flavour neutrino oscillations.

Standard Oscillations

• Analysis of three-flavour oscillations yields precision measurements of Δm_{32}^2 and $\sin^2\theta_{23}$ parameters:

MINOS, MINOS+ – 68% C.L. – 90% C.L. combined analysis Normal Hierarchy: MINOS+ Preliminary 3.0 $\Delta m^2_{32} = 2.42^{+0.09}_{-0.09} imes 10^{-3} {
m eV}^2$ $(10^{-3} eV^{2})$ $0.35 < \sin^2 heta_{23} < 0.65 ~(90\%~{
m C.L.})$ 2.5 **Inverted Hierarchy:** ∆m²₃₂ ($\Delta m^2_{32} = -2.48^{+0.09}_{-0.11} imes 10^{-3} {
m eV}^2$ 2.0 Neutrino 2016 $0.35 < \sin^2 heta_{23} < 0.66~~(90\%~{
m C.L.})$ Neutrino 201 T2K 90% C.L. Normal hierarchy 0405 07 03 06 $\sin^2\theta_{23}$

The data from MINOS+ improve the standard oscillation measurement, but also significantly enhance searches for new physics.

Andy Blake, Lancaster University

Sterile Neutrino Oscillations

- The wideband L/E coverage of MINOS and MINOS+ generates strong sensitivity to oscillations involving sterile neutrinos.
- The MINOS/MINOS+ data have been analysed using a "3+1" model of sterile neutrinos:
 - > 3 active flavours (v_e , v_μ , v_τ).
 - > Add 1 sterile flavour (v_S) and 1 extra mass state (v_4).
 - \Rightarrow 4 × 4 neutrino mixing matrix.
- Neutrino oscillations are described by 12 parameters [3-flavour, 4-flavour]: Mass splittings: Δm_{32}^2 , Δm_{21}^2 , Δm_{41}^2 Mixing angles: θ_{12} , θ_{23} , θ_{13} , θ_{14} , θ_{24} , θ_{34} CP-violating phases: δ_{13} , δ_{14} , δ_{24}
 - \Rightarrow 6 new oscillation parameters.

Sterile Neutrino Signatures

The combined data from MINOS and MINOS+ are sensitive to the third mass splitting and all three additional mixing angles:

(1) v_{μ} disappearance analysis:

> Search for presence of additional oscillations in v_{μ} CC spectrum due to third mass splitting.

\star Predominantly sensitive to Δm_{41}^2 and θ_{24} .

> Search for anomalous disappearance in spectrum of NC events arising from $v_{\mu} \rightarrow v_{s}$ oscillations.

★ Additional sensitivity to θ_{24} , plus some sensitivity to θ_{34} .

(2) $v_{\mu} \rightarrow v_{e}$ appearance analysis:

- > Search for anomalous $v_{\mu} \rightarrow v_{e}$ appearance in v_{e} CC spectrum at energies above three-flavour oscillations.
 - ★ Predominantly sensitive to θ_{14} and θ_{24} .

Sterile Neutrino Signatures

- Sterile neutrino oscillations can occur in both MINOS detectors.
 In the case of ν_μ disappearance:
- > Small ∆m²₄₁ (>∆m²₃₂) (10⁻³ 10⁻¹ eV²)
 Far Detector: additional oscillations above 3-flavour oscillation maximum.
 Near Detector: no effect.
- ➤ Medium △m²₄₁ (10⁻¹ 1 eV²)
 - Far Detector: oscillations become rapid and average out, causing a constant depletion ("counting experiment").Near Detector: no effect.
- ≻ Large ∆m²₄₁ (1 10² eV²)
 Far Detector: constant depletion.
 Near Detector: oscillations.

v_{μ} Disappearance Analysis

 Previous MINOS sterile analysis* based on ratio of Near and Far energy spectra.

 \succ Many systematics cancel in this ratio.

- But Far/Near ratio method has limitations:
 ➤ Uncertainty dominated by Far statistics.
 ➤ High-Δm²₄₁ oscillations cancel in ratio.
- For combined MINOS/MINOS+ analysis, have now developed a two-detector fit.

Andy Blake, Lancaster University

Two-Detector Fit

- Combine ν_µ CC and NC data from MINOS (neutrino-mode) and MINOS+ into single analysis, using simultaneous two-detector fit.
- Treatment of 3+1 oscillation parameters same as previous MINOS analysis:
 - > Fitted: Δm_{41}^2 , Δm_{32}^2 , θ_{23} , θ_{24} , θ_{34} .
 - > Set to zero: θ_{14} , δ_{13} , δ_{14} , δ_{24} .
 - > Global best-fits: Δm_{21}^2 , θ_{12} , θ_{13} .
- Statistical and systematic uncertainties enter fit via covariance matrices.
 - Have incorporated 44 sources of systematic uncertainty.
 - In particular, now utilise a-priori flux prediction from Minerva*.
 - Many uncertainties cancel via matrix cross-terms.
 - * L. Aliaga et al., Phys. Rev. D 94, 092005 (2016)

Sterile Neutrino Sensitivity

Observed Energy Spectra

CC-selected events

NEAR DETECTOR

FAR DETECTOR

20

MINOS+ Preliminary

 $\Delta m_{32}^2 = 2.51 \text{ x} 10^{-3} \text{ eV}^2$

 $\Delta m_{41}^2 = 0.013 \text{ eV}^2$

 $sin^{2}(\theta_{23}) = 0.668$

 $\sin^2(\theta_{24}) = 0.001$

CC Far Detector data

CC 3-flavour prediction

Systematic uncertainty

30

CC 3+1-flavour prediction

Andy Blake, Lancaster University

40

Observed Energy Spectra

NC-selected events

NEAR DETECTOR

3 Near Detector, vu-mode MINOS+ Preliminary 7.99×10²⁰ POT MINOS 5.87×10²⁰ POT MINOS+ NC Near Detector data Events (×10⁶) / GeV NC 3-flavour prediction NC 3+1-flavour prediction Events / GeV Systematic uncertainty $\Delta m_{32}^2 = 2.51 \text{ x} 10^{-3} \text{ eV}^2$ $\Delta m_{41}^2 = 0.013 \text{ eV}^2$ $\sin^2(\theta_{23}) = 0.668$ $\sin^2(\theta_{24}) = 0.001$ Ratio to Std. Osc. Ratio to Std. Osc. 1.4 1.4 1.2 0.8 0.8 0.6 0.6 20 0 10 30 40 0 Reconstructed Energy (GeV)

FAR DETECTOR

Exclusion Contours

- Confidence limits in (Δm²₄₁, θ₂₄) are constructed using the Feldman-Cousins method.
 - > <u>Note</u>: χ^2 is minimised with respect to Δm^2_{32} , θ_{23} and θ_{34} in each bin of this 2D space.
- A strong exclusion limit on the $\frac{6}{24}$ mixing angle θ_{24} is obtained over several decades in Δm_{41}^2 .
- The exclusion limit calculated using the observed data falls within ±2σ sensitivity band.
- Obtain the following 1D limits at $\Delta m_{41}^2 = 0.5 \text{eV}^2$:

 $egin{aligned} \sin^2 heta_{24} &< 0.005 \ (90\% \ {
m C.L.}) \ \sin^2 heta_{34} &< 0.16 \ (90\% \ {
m C.L.}) \end{aligned}$

Comparison with Other Experiments

- New MINOS & MINOS+ limit improves upon the previous MINOS analysis.
 - > Limit on θ_{24} is world-leading for much of Δm_{41}^2 range.
- Results increase tension with with hints from global fits*.
 - > e.g. fit from Gariazzo et al. is displayed in $(\Delta m_{41}^2, \theta_{24})$ parameter space by setting $|U_{e4}|^2=0.023$.

(This fit doesn't include data from MINOS or IceCube)

* S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li, E.M. Zavanin, J. Phys. G43, 033001 (2016)

$v_{\mu} \rightarrow v_{e}$ Appearance Analysis

- ♦ A sterile-driven v_{μ} → v_{e} appearance has also been performed using 3×10^{20} POT of MINOS+ data.
- Search for anomalous appearance in 6-12 GeV energy region.
 - > Away from standard oscillations.
- Near Detector is used to produce Far Detector prediction.
 - ≻ Expect 56.7 events, observe 78.
 > 2.3σ excess.
- Exclusion contours in sin²θ₂₄ sin²2θ₁₄ calculated using Feldman-Cousins method.
- This analysis is based on one third of the available data from MINOS+. More to come!

Combining with Daya Bay & Bugey-3

♦ Can probe v_{μ} → v_{e} appearance hints from experiments such as LSND and MiniBooNE by combining long-baseline v_{μ} disappearance data with reactor v_{e} disappearance data.

- In 2016, MINOS and Daya Bay published a combined sterile result, with inclusion of Bugey-3 data*.
- Details of reactor data:
 - ➤ Daya Bay [8AD data set, 404 days]: Baselines: 520m, 570m, 1590m Sensitivity: Δm²₄₁~10⁻³-10⁻¹ eV²
 - ➤ Bugey-3 [Nucl Phys B434, 503 (1995)]: Baselines: 15m, 40m, 95m Sensitivity: Δm²₄₁~10⁻¹-10 eV²
- Combined analysis yielded strong exclusion limits on $\sin^2 2\theta_{\mu e}$.
- Have now updated combined analysis to include MINOS+ data.

* MINOS: P. Adamson et al, PRL 117, 151803 (2016) Daya Bay: F. P. An et al., PRL 117, 151802 (2016) Combination: P. Adamson et al., PRL 117, 151801 (2016)

- Combined analysis uses CL_s method to calculate joint confidence limits.
 - <u>Problem</u>: while joint likelihood surface is straight forward to compute, Feldman-Cousins correction is onerous.
 - □ Would involve combined fits with Δm_{41}^2 , $\sin^2 2\theta_{14}$, $\sin^2 \theta_{24}$ all free.
 - Difficult without joint fit framework.
 - > CL_s method provides a <u>solution</u>.
 - □ Each CL_s value is calculated with Δm_{41}^2 , $\sin^2 2\theta_{14}$, $\sin^2 \theta_{24}$ fixed.
- When the MINOS/MINOS+, Daya Bay and Bugey-3 limits are individually re-calculated using CL_s method, resulting contours agree well with Feldman-Cousins method.

• Likelihood surfaces from each experiment have a shared y-axis (Δm_{41}^2), but different x-axes (sin²2 θ_{14} vs sin² θ_{24}).

Andy Blake, Lancaster University

New Combined Result

- New preliminary result from the ongoing collaboration between MINOS/MINOS+ and Daya Bay (with the inclusion of Bugey-3).
- No evidence for 3+1 sterile neutrino oscillations.
- Strong exclusion limits on $\sin^2 2\theta_{\mu e}$ are obtained for a wide range of Δm_{41}^2 .

J. Kopp, P. Machado, M. Maltoni, T. Schwetz, JHEP 1305:050 (2013)

S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li, E.M. Zavanin, J.Phys. G43 033001 (2016)

New Combined Result

 10^{3} As expected, the new MINOS+ 90% C.L. Allowed Preliminary two-detector fit significantly LSND MINOS+ 10^{2} MiniBooNE improves the constraint in the **MNOS** MiniBooNE (v mode) region $\Delta m_{41}^2 > 10 eV^2$. Daya Bay Kopp et al. (2013) Bugey-3 10 --- Gariazzo A new combined analysis et al. (2016) ∆m₄₁ (eV²) with a larger data set from Daya Bay is planned for the future. 10^{_1} 10⁻² 90% C.L. (CL.) Excluded 10⁻³ OMAD KARMFN2 P. Adamson et al., Phys. Rev. Lett. 117, MINOS and Daya Bay/Bugey-3 151801 (2016) MINOS/MINOS+ and Daya Bay/Bugey-3 J. Kopp, P. Machado, M. Maltoni, 10 T. Schwetz, JHEP 1305:050 (2013) 10⁻¹ 10⁻⁵ 10⁻² 10 S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li, $\sin^2 2\theta_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2$ E.M. Zavanin, J.Phys. G43 033001 (2016)

Summary

- MINOS/MINOS+ v_{μ} disappearance analysis has set strong limits on the θ_{24} mixing angle over several decades in Δm_{41}^2 .
 - Exclusion contours enhanced by two-detector fit method.
- New preliminary combined fit with data from Daya Bay & Bugey-3.
 - Further increases tension between sterile neutrino results from appearance and disappearance.
- More sterile neutrino results to come:
 - > New v_{μ} disappearance and v_e appearance results using complete MINOS+ data set.
 - > New anti- v_{μ} disappearance analysis.
 - > Updated combined analysis with Daya Bay & Bugey-3.
- Watch this space!

BACKUP

Event Selection

• v_{μ} disappearance analysis selects two event topologies:

(1) v_{μ} CC interactions:

Distinguished by presence of reconstructed muon track.

(2) NC interactions:

Distinguished by presence of hadronic shower and no muon track.

<u>Note</u>: v_e CC and v_τ CC events typically enter as small backgrounds (usually appears shower-like).

Selection of NC-like Events

- Two main selection criteria are used to separate NC interactions from the dominant background of v_{μ} CC interactions:
 - ≻ Event length.
 - > Extension of reconstructed track beyond hadronic shower.
- In each case, the selection variables are sensitive to the presence of minimally-ionising muon tracks produced by v_{μ} CC interactions.

Selection of CC-like Events

- $\blacklozenge v_{\mu}$ CC interactions are identified using a multivariate kNN algorithm, which takes the following inputs:
 - > Track length > Mean dE/dx
 - Transverse profile
 Energy loss fluctuations
- Inputs are designed to identify characteristic properties of the muon.

Event Spectra

Systematic Uncertainties

- Consider 44 sources of systematic uncertainty in a variety of categories:
 - ➤ Beam focusing
 - ➤ Hadron production
 - Beam focusing
 - > X-sections [largest for CC]
 - Backgrounds
 - Energy scale [largest for NC]
 - Normalisation
 - > ND acceptance & reconstruction
- <u>Note</u>: focusing parameters are incorporated into fit as nuisance parameters.

Sources of Systematic Uncertainty:

Maximum uncertainty (%)			
ND CC	FD CC	ND NC	FD NC
7%	7%	7%	7%
10%	10%	11%	13%
1%	1%	10%	5%
10%	8%	20%	18%
6%	3%	6%	3%
15%	12%	25%	20%
	ND CC 7% 10% 1% 10% 6% 15%	ND CC FD CC 7% 7% 10% 10% 1% 1% 10% 3% 6% 3% 15% 12%	ND CCFD CCND NC7%7%7%10%10%11%1%1%10%10%8%20%6%3%6%15%12%25%

$$\chi^2 = \sum_{i=1}^N \sum_{j=1}^N (o_i - e_i)^T [V^{-1}]_{ij} (o_j - e_j)$$

CC Systematics

NC Systematics

3+1 Sterile Neutrino Model

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} & U_{\mu4} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} & U_{\tau4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - 4|U_{\mu3}|^{2}(1 - |U_{\mu3}|^{2} - |U_{\mu4}|^{2})\sin^{2}\Delta_{31} \\ - 4|U_{\mu4}|^{2}|U_{\mu3}|^{2}\sin^{2}\Delta_{43} \\ - 4|U_{\mu4}|^{2}(1 - |U_{\mu3}|^{2} - |U_{\mu4}|^{2})\sin^{2}\Delta_{41} \end{pmatrix}$$
For $U = R_{34}R_{24}R_{14}R_{23}R_{13}R_{12}$

$$|U_{\mu4}|^{2} = \cos^{2}\theta_{14}\sin^{2}\theta_{24}$$

$$|U_{\mu3}|^{2} = \sin^{2}\theta_{13}\sin^{2}\theta_{14}\sin^{2}\theta_{24}$$

$$+ \cos^{2}\theta_{13}\sin^{2}\theta_{23}\cos^{2}\theta_{24}$$

$$- \frac{1}{2}\cos(\delta_{13} - \delta_{14} + \delta_{24})\sin 2\theta_{13}\sin\theta_{23}\sin\theta_{14}\sin 2\theta_{24}$$

Sterile Neutrino Oscillations

Smaller Δm_{41}^2 – Distortions in FD above oscillation maximum Larger Δm_{41}^2 – Rapid oscillations in FD & Distortions in ND

Sterile Sensitivity

• Relative contributions of CC and NC events in $\Delta m_{41}^2 - \theta_{24}$ sensitivity:

Signal Injection Test

- ♦ A signal injection test was performed for input parameters consistent with recent global best fit results: $\theta_{24}=0.15$; $\Delta m_{41}^2=1.65 \text{eV}^2$.
- An allowed region is visible with or without systematic fluctuations.

CL_s Method

• For each pair of $(\sin^2 2\theta_{14}, \Delta m_{41}^2)$, is the 4ν (H₁) model much worse than the 3v (H_o) model? $\Delta \chi^2_{obs}$ $\Delta \chi^2 = \chi^2_{H_1} - \chi^2_{H_0}$ $CL_{b} = P(\Delta \chi^{2} \ge \Delta \chi^{2}_{obs} | 3\nu) =$ $CL_{s+b} = P(\Delta \chi^{2} \ge \Delta \chi^{2}_{obs} | 4\nu) =$ $CL_s = \frac{CL_{s+b}}{CL_b} = 1.0003$

Point is excluded at (1- α) CL_s, if CL_s < α

CL_s Method in MINOS+

- For each (Δm_{41}^2 , θ_{24}) point:
 - Generate 3-flavour pseudo experiments using PDG oscillation parameters.
 - > Generate 4-flavour pseudo experiments using the current (Δm_{41}^2 , θ_{24}) point.
 - Fit each fake experiment to both the 3-flavour and 4-flavour hypotheses to build the Δχ² distributions.
 - > Use generated $\Delta \chi^2$ distributions, along with $\Delta \chi^2_{Obs}$, to calculate CL_s for this point in parameter space.
 - > 4-flavour hypothesis is excluded at (1- α) C.L. if CL_s < α .

 $CL_s = CL_{s+b}/CL_b$

For each point in the parameter space, combine $\Delta \chi^2$ distributions

<u>Step 1</u>: For each row of fixed Δm_{41}^2 , compute the combined limit in the appearance parameter space

Electron Neutrino Appearance

Muon Antineutrino Sensitivity

♦ In the MINOS data, can select anti-v_μ CC interactions from:
 > The antineutrino component of the neutrino-mode beam.
 > The antineutrino beam.

