New limits on Heavy Neutrinos from NA62

Antonino Sergi on behalf of the NA62 collaboration

NUFACT 2017, Uppsala, Sweden 25-30 September 2017

UNIVERSITY^{OF} BIRMINGHAM

Kaon Decay Experiments at CERN

Heavy Neutrino: Motivation

- Observation of neutrino oscillations \rightarrow massive neutrinos need to be accommodated in SM
- Example of a SM extension: Neutrino Minimal SM (vMSM) [Asaka et al., PLB 620 (2005) 17]
 - 3 right-handed neutrinos N_i added to SM, masses: $m_1 \sim 10 \, {
 m keV}$, $m_{2,3} \sim 1 \, {
 m GeV}$
 - N_1 : dark matter candidate
 - $N_{2,3}$: extra CPV-phases to account for Baryon Asymmetry, produce SM masses via see-saw mech.

Heavy Neutrino: Motivation

- Observation of neutrino oscillations \rightarrow massive neutrinos need to be accommodated in SM
- Example of a SM extension: Neutrino Minimal SM (vMSM) [Asaka et al., PLB 620 (2005) 17]
 - 3 right-handed neutrinos N_i added to SM, masses: $m_1 \sim 10 \, {
 m keV}$, $m_{2,3} \sim 1 \, {
 m GeV}$
 - N_1 : dark matter candidate
 - $N_{2,3}$: extra CPV-phases to account for Baryon Asymmetry, produce SM masses via see-saw mech.
- If $m_N < m_{K^+}$, heavy neutrinos observable via production in: $\Gamma(K^+ o l^+ N) = \Gamma(K^+ o l^+
 u_l) \;
 ho_l(m_N) \; |U_{l4}|^2$
- This talk: search for peaks in $m_{miss}(K_{l2}) = \sqrt{(P_K P_l)^2}$
 - NA62 2007 data sample: $l = \mu$
 - NA62 2015 data sample: l = e
- Other searches look for decays of heavy neutrinos (HN), e.g.

 $N
ightarrow \pi^{\pm} l^{\mp} \ , \ N
ightarrow \pi^{0}
u , \ldots$

4

UNIVERSITYO

NA62 Experiment in 2007

- Main measurement: $R_K = \Gamma(K_{e2})/\Gamma(K_{\mu 2})$ Phys. Lett. B 719 (2013) 326
- Beam momentum: (74 ± 2) GeV/c
- Triggers: 1-track e^{\pm} , 1-track μ^{\pm} (scaled down)
- Subdetectors:
 - Magnetic spectrometer (4 DCHs) $\sigma_p/p = 0.48\% \oplus 0.009\% \cdot p \; [{
 m GeV/c}]$
 - Scintillator hodoscope (HOD)
 - Liquid Krypton EM calorimeter (LKr) $\sigma_E/E = (3.2/\sqrt{E} \oplus 9/E + 0.42)\%$ (E in GeV) $\sigma_x = \sigma_y = (4.2/\sqrt{E} \oplus 0.6)$ mm (1.5 mm @ 10 GeV)
 - Muon veto system (MUV)

NA62 Experiment in 2007

Uncertainties

• Kaon decays

≻Below 1 %

- ≻ Dominated by $K_{\mu3}$
- Dominant systematic uncertainty in the signal region is from halo muons
 - ≻Generated along the beamline
 - Extensively studied to reduce their contribution in the signal region
 - ➤ Residual contribution modeled with K- and Kless data samples

Heavy Neutrino Search in 2007 Data

Rolke-Lopez method used to find upper limits on number of signal events

- Heavy neutrino mass step: $1 \, {
 m MeV}/c^2$
- Search window size defined by HN mass resolution

NA62 Experiment in 2015

- Main goal, 10% precision measurement of: $\mathcal{B}(K^+ o \pi^+
 u ar{
 u})$
- Beam momentum: 75 GeV/c (±1%)
- Subdetectors:
 - Tracking: kaon (GTK), $\pi/\mu/e$ (Straw)
 - Hermetic veto detectors:
 - Photons (LAV, LKr, SAC, IRC)
 - Muons (MUV)
 - Particle identification
 - Kaon in the beam (KTAG)
 - $\pi/\mu/e$ (RICH, LKr, MUV)

NA62 collaboration, JINST 12 (2017) P05025

Data taking conditions in 2015:

- Minimum bias at 1% of design beam intensity
- Beam tracker not available; kaon momentum estimated as beam average

Data Sample in 2015

- Kaon decays in fiducial volume: $N_K = (3.01 \pm 0.11) imes 10^8$
- Heavy neutrino (HN) MC simulation Squared missing mass: $m_{miss}^2 = (P_K - P_e)^2$ \succ Acceptance vs. HN mass: $A(m_N)$ \succ Missing mass resolution vs. HN mass: $\sigma(m_N)$ - Data 500 K⁺→π⁰e⁺ν 0.35 0.3 €.0 etauce 0.25 $\pi^+ \rightarrow e^+ v$ ∑22 20 20 $K^+ \rightarrow \mu^+ \nu \ (\mu^+ \rightarrow e^+ \nu \nu)$ 400 $K^+ \rightarrow \mu^+ \nu$ (no μ decay) 18 181 $K^+ \rightarrow e^+ v(\gamma)$ $\sigma(m_N)$ $A(m_N)$ 300 Mass 0.15 10 200 0.1 0.05 100 0 200 250 300 350 400 44 450 450 150 350 400 100 250300 HNL mass [MeV/c²] HNL mass [MeV/c²] Signal region: $m_{miss} \in (170, 448) \, {
 m MeV}/c^2$ 0.05 0.1 0.15 0.2 0 m²_{miss} [GeV²/c⁴] **UNIVERSITY**OF

BIRMINGHAM

10 Antonino Sergi | NUFACT2017 | New limits on Heavy Neutrinos from NA62

Heavy Neutrino Search in 2015 Data

Rolke-Lopez method used to find upper limits on number of signal events

- Heavy neutrino mass step: $1 \, {
 m MeV}/c^2$
- Search window size for each mass hypothesis: $\pm 1.5 \sigma(m_N)$

Upper Limits on $|U_{|4}|^2$

$$egin{aligned} &|U_{l4}|^2 = rac{\mathcal{B}(K^+ o l^+ N)}{\mathcal{B}(K^+ o l^+
u_l) \;
ho_l(m_N)} \end{aligned}$$

- NA62 2007 data analysis:
 - Extends the mass range for upper limits on $\left| U_{\mu 4} \right|^2$
 - Most stringent limit in $m_N \in (300, 375)\,{
 m MeV}/c^2$
- NA62 2015 data analysis:
 - Reaches $10^{-6} 10^{-7}$ limits on $\left|U_{e4}\right|^2$ in the range

 $m_N \in (170,448)\,\mathrm{MeV}/c^2$

UNIVERSITYOF

Summary and Outlook

- NA62 searches for heavy neutrino production in charged kaon decays were presented
 - No heavy neutrino signal observed
- Analysis of NA62 2007 data (PLB 772 (2017) 712):
 - About 60 million K⁺ decays in the fiducial volume
 - Improves limits on $|U_{\mu4}|^2$ for

 $m_N \in (300, 375)\,{
m MeV}/c^2$

- Analysis of NA62 2015 data (paper in preparation):
 - About 300 million K⁺ decays in the fiducial volume
 - New limits on $\left| U_{e4}
 ight|^2$ reaching $10^{-6} \!\!-\! 10^{-7}$ for $m_N \in (170, 448)\,\mathrm{MeV}/c^2$
- Future prospects:
 - Major analysis improvements with NA62 2016 high intensity data set, e.g. fully working beam tracker

