## Construction of new DC muon beamline, MuSIC-RCNP, for muon applied science

## Dai Tomono

Research Center for Nuclear Physics (RCNP), Osaka University

On behalf of the MuSIC-RCNP collaboration

tomono@rcnp.osaka-u.ac.jp

- 1. MuSIC beamline Concept/ Construction
- 2. Music beamline Commissioning
- 3. MuSIC experiment

#### 4. Summary

26th Sep. 2017

RCNP 大阪大学 核物理研究センター Research Center for Nuclear Physics, Osaka University



# **MuSIC Beamline**

## **MuSIC** beamline at RCNP, Osaka University

#### MuSIC (Muon Science Innovative muon beam Channel) beamline ?

pion capture solenoid + pion collection solenoid + conventional triplet-Q & bends beamline • world's most efficient DC muon beam source (  $\sim 10^3$  )



pion capture solenoid :

- realize large pion / muon collection efficiency
- Radiation issues (coil cooling for the heat load) muon collection solenoid :
- transport and focus with dipole field

#### 26th Sep. 2017



- Muon beam transport to the experimental port
- **Electron separation**
- Start experiments

## First experiment : Muon yield measurement at the solenoid exit (2011)

#### Prior experiments to measure muon beams at the solenoid exit.





$$N_{\mu-} = (3.6 \pm 0.4) \times 10^7$$

PHYSICAL REVIEW ACCELERATORS AND BEAMS 20, 030101 (2017)

#### Editors' Suggestion

#### Delivering the world's most intense muon beam

S. Cook,<sup>1</sup> R. D'Arcy,<sup>1</sup> A. Edmonds,<sup>1</sup> M. Fukuda,<sup>2</sup> K. Hatanaka,<sup>2</sup> Y. Hino,<sup>3</sup> Y. Kuno,<sup>3</sup> M. Lancaster,<sup>1</sup> Y. Mori,<sup>4</sup> T. Ogitsu,<sup>5</sup> H. Sakamoto,<sup>5</sup> A. Sato,<sup>3</sup> N. H. Tran,<sup>3</sup> N. M. Truong,<sup>3</sup> M. Wing,<sup>1,\*</sup> A. Yamamoto,<sup>5</sup> and M. Yoshida<sup>5</sup> <sup>1</sup>Department of Physics and Astronomy, UCL, Gower Street, London WCIE 6BT, United Kingdom <sup>2</sup>Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 569-0047, Japan <sup>3</sup>Department of Physics, Graduate School of Science, Osaka University, Osaka 569-0043, Japan <sup>4</sup>Kyoto University Reactor Research Institute (KURRI), Kyoto 590-0494, Japan <sup>5</sup>High Energy Accelerator Research Organization (REK), Tsukuba 305-0801, Japan (Received 25 October 2016; published 15 March 2017)

A new muon beam line, the muon science innovative channel, was set up at the Research Center for

#### Phys. Rev. Accel. Beams 20 (2017)030101.

published

## Research Center for Nuclear Physics (RCNP), Osaka University



- proton beam energy is only 100 MeV above pion production threshold ( $\sim 2m_{\pi}$ )
- muon source with low proton power (1.1 uA ~0.4kW, 5 uA in future)

## Layout of Music M1 Beamline



## **Comparison of pion production methods**





#### Pion capture solenoid & Pion transport solenoid

- Pion capture solenoid (3.5T)
  - pion production target inside (1.5 interaction length)
  - pion collection with large solid angles
- Pion transport solenoid (2.0T)
  - -Curved solenoid to capture and transport pion/muon
  - Momentum selection with dipole collection field







#### Beam Profile by G4beamline simulation

## **Proton beam monitoring**



proton beam is tuned to penetrate and focus at the center of graphite taeget



#### **Prototype beamline for COMET experiment but ...**



- demonstrated proof-of-principle for muon production with the solenoid system using 392 MeV/1uA DC proton beam
- The MuSIC is aiming for a <u>versatile beamline</u> for muon experiments with variety of science.

# Beamline Commissioning & Experiments

## Experimental port (at the M1 beamline end)

#### Muonic X-ray measurement



## **Muon yield measurement**

#### Inflight-decay muons ( $\mu^{\pm}$ ) Surface muon ( $\mu^+$ ) Muon intensity [muon/sec/uA proton] Muon intensity [muon/sec/uA proton] Negative muon Positive muon Succeed in observing surface muons (~28 MeV/c) ×10<sup>3</sup> $^{1}x10^{5}u$ –/s @60MeV/c $^{7}x10^{5}\mu + /s$ @60MeV/c Target position tuned 140 with 1µA proton beam for surface muon with $1\mu A$ proton beam Vluon intensity [muon/sec/uA proton] $\times 10^4$ 10 120 $^{\prime}$ 3 x 10<sup>4</sup> surface $\mu$ +/s @ 28 MeV/c 9 with 1 mA proton beam 8 100 80 60 3 Inflight-decay muons 200 40 100 0 20 100 10 20 40 50 60 70 **■**●|....|....|....|....|....|•.... ملت 10 20 30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100 0 10 20 Muon momentum [MeV/c]

Muon momentum [MeV/c]

Muon momentum [MeV/*c*]

\*\* note that muon yield (vertical axis) is scaled for 1uA proton beam

operation

20nA (2016 run) -> 1.1uA (2017 run)



## Beam profile measurement

#### Beam profile at the beamline end (beam focusing position) p = 28 MeV/c



#### Spin measurement



Positive muon momentum

- Muon beam at the solenoid end (G4 beamline output)
- Separate forward and backward decay muons to investigate beam polarization
- Calculate the expected polarization geometrically and compare the experimental results



### Spin precession measurement results



#### Typical observed asymmetry spectra

#### Measured polarization

| Momentum<br>[MeV/c] | Polarization<br>(G4 simulation) | Polarization<br>(measured) |
|---------------------|---------------------------------|----------------------------|
| 28 (surface μ)      | 48                              | 57                         |
| 40                  | 10                              | 16                         |
| 50                  | 45                              | 59                         |
| 60                  | 55                              | 57                         |

#### Positive muon momentum



## **Muon Science at MuSIC**

- Stage 0
  - proof-of-principle for muon capture and transport solenoid (also for COMET experiment)
  - high efficiency (~ 10<sup>3</sup>) muon production was achieved (measured at the capture solenoid end), paper published in 2017
- <u>Stage 1(2012-16)</u>
  - -Conventional triplet-Q and bend magnets were installed successively to the collection solenoid.
  - -Beam commissioning is performed
  - Physics programs start
    - Muonic X-ray analysis and non-destructive analysis
      - Chemistry on muonic and pionic atoms
      - non-destructive element analysis (ex, from asteroid explorer, Hayabusa-II)
    - Probes for condensed matter physics (DC-µSR), Feasibility tests are in progress
  - -beam intensity increased by 50 times larger (proton beam upgrade : 20 nA to 1.1 uA)

#### • present

- -Start experiments with negative and positive muons
- -Muon capture and X-ray elemental analysis are in progress
- -DC-µSR study (still in commissioning for user experiments)

#### • <u>future</u>

- -Nuclear physics
  - Nuclear muon capture for 0vββ study (for nuclear matrix element determination, assigned beam in 2018)
  - Gamma-ray measurement from nuclear capture with heavy nuclei
  - Nuclear physics combined with the high resolution / acceptance spectrometer in RCNP (prospects)
- Improvement of the beamline to obtain further intense muon beam (around the solenoid and triplet-Q) Dai Tomono Nufact17 @ Uppsala, Sweden
  — new physics programs

We are now in this stage (2017)

17

## **Experiments at MuSIC**

| Ехр #    | spokespersion                                      | Title                                                                                                               | Beam time<br>date | Beam<br>current | status |
|----------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|--------|
| E411     | K. Terada<br>(Osaka U)                             | Development on non-destructive elemental analysis of planetary materials by using high intensity $\mu\text{-}$ beam | Nov 2015          | 20 nA           | Done   |
| G02/E475 | H. Sakurai<br>(RIKEN)                              | (Impact project) Reaction Mechanism of Muon Nuclear Capture on Pd Isotopes                                          | May 2016          | 20 nA           | Done   |
| G02/E475 | T. Matsuzaki<br>(RIKEN)                            | Reaction Mechanism of Muon Nuclear Capture on Pd Isotopes                                                           | Feb 2017          | 1.1 uA          | Done   |
| E467     | K. Takahisa<br>(RCNP)                              | Measurement of the muon capture on 3He by using of the high intensity continuous $\mu\text{-}$ beam                 | Jun 2017          | 1.1 uA          |        |
| E490     | K. Terada<br>(Osaka U)                             | Muonic X-ray analysis of planetary materials: Development on Isotopic measurement and Muonic X-ray imaging          | Jun 2017          | 1.1 uA          |        |
| E489     | Izyan Hashim<br>(Universiti Teknologi<br>Malaysia) | Muon-gamma spectroscopy for neutrino nuclear responses                                                              | Jan 2018          | 1.1 uA          |        |







- All experiments (approve) are the negative muon experiments.
- Now we start the feasibility study of the positive muon experiments

#### negative muon experiments



## **µSR for condensed matter physics**

- μSR (Muon Spin Rotation/Relaxation/Resonance) for condensed matter physics
- Large number of users for condensed matter physics
- In Japan, intense pulsed beam at JPARC and DC beam at MuSIC become available
- DC beam has a merit for good time-resolution measurement







### **Observation fast precession in Fe**

μSR experiment : sample Fe (ferromagnet) at room temperature observe the internal field of Fe (expect ! 48 MHz precession )



#### Summary

- New innovative DC muon source with solenoid system has been developed.
  - good pion production & collection efficiency of ~  $10^3$
  - pion capture & transport solenoid + triplet-Q and bend magnets beamline for various muon science experiments
- Beamline commissioning is in progress
  - —inflight-decay  $\mu^+$  10<sup>5</sup>-10<sup>6</sup>  $\mu^-$  10<sup>5</sup>-10<sup>6</sup> surface  $\mu^+$  3 x 10<sup>4</sup> [count/sec/1uA proton beam]
  - —Improvement of muon beam (especially, solenoid and triplet-Q connection)
- •Start physics program in MuSIC
  - -nuclear physics (muon capture)
  - -radio-chemistry and non-destructive evaluation of elements
  - —positive muon for  $\mu$ SR measurement (feasibility study in progress)
  - MuSIC has possibility to perform experiments of muon applied science

collaboration photo (2016/2017)

