

Super-Kamiokande Latest atmospheric neutrino results

Flor de María Blaszczyk on behalf of the Super-Kamiokande collaboration

NuFact 2017 – Uppsala, Sweden

Mass hierarchy

Neutrino oscillations

 Flavour (interaction) eigenstates ≠ Mass (propagation) eigenstates, linked by the PMNS mixing matrix:

- → oscillation parameters: $2 \Delta m_{ii}^2 (\Delta m_{ii}^2 = m_i^2 m_i^2)$, 3 mixing angles θ_{ii} and 1 phase.
- To be solved:
 - **CP-violation phase** δ : are neutrino and antineutrino oscillation probabilities different?
 - Mass hierarchy: is it normal or inverted?
 - → use matter effects
 - θ_{23} octant: is θ_{23} really $\pi/4$? Is it smaller or larger?

Atmospheric neutrinos can be used to study all of these questions!

Atmospheric neutrino production

- Produced as decay products of secondary particles from cosmic ray interactions with the Earth's atmosphere
- Mix of $\nu_{e},\,\nu_{\mu},\,\overline{\nu}_{e}$ and $\overline{\nu}_{\mu}$
- Power spectrum, ratios well predicted

The Super-Kamiokande detector

→ Results shown include data from all 4 periods (5326 days)

Atmospheric neutrino samples

- Fully contained (FC):
 - Reconstructed vertex inside FV
 - No OD activity
 - Sub-divided into 14: e-like, μ -like, π^{o} -like, nb. of rings, energy, nb. of decay electrons

• Partially contained (PC):

- Vertex in FV
- With OD activity
- Sub-divided into 2: stopping and through-going

• Upward going muon (Upmu):

- Produced by neutrinos in rock around SK or OD
- Sub-divided into 3: stopping, through-going non showering and through-going showering

 \rightarrow energy range from ~100 MeV to ~10 TeV

Event rates

Monte Carlo samples

- Uses Honda et al. 2011 flux calculation (arXiv:1102.2688 [astroph.HE])
- Neutrino interactions simulated with updated NEUT 5.3.6
 - CCQE: Fermi gas, M_A=1.2 GeV/c², dipole form factor changed to BBBA05 (extracted from escattering experiments)
 - Include meson exchange currents (Nieves et al.,
 - CC/NC 1π form factor change (Graczyk & Sobczyk)
 - \rightarrow M_A = 1.21 GeV/c² \rightarrow 0.95 GeV/c²
 - DIS (multi-π) improvement, formation zone correction

Atmospheric neutrino oscillation analysis

Matter effects

• Matter effects due to v_{e} -electron scattering

$$H_{\text{matter}} = \begin{pmatrix} \frac{m_1^2}{2E} & 0 & 0\\ 0 & \frac{m_2^2}{2E} & 0\\ 0 & 0 & \frac{m_3^2}{2E} \end{pmatrix} + U^{\dagger} \begin{pmatrix} a & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} U$$

where $a = \sqrt{2} G_F N_e$ (– *a* for \bar{v}), G_F is the Fermi constant, and N_e the electron density

• Earth modelled with 4 layers

 \rightarrow simplified preliminary reference Earth model (PREM)

- Spherical symmetry so neutrino path only depends on:
 - production height
 - zenith angle

Matter effects

→ Resonant enhancement visible only in neutrinos for normal hierarchy (antineutrinos for inverted)

F. Blaszczyk - NuFact 2017

Analysis

- Three different fits are done:
 - 1) Super-K atmospheric only (θ_{12} and Δm_{12}^2 fixed), θ_{13} free
 - 2) Super-K atmospheric only, $\sin^2 \theta_{13} = 0.0219$ (Daya Bay + RENO + Double Chooz)

3) Super-K atmospheric + T2K model, $\sin^2 \theta_{13} = 0.0219$

• Binned χ^2 method using systematic errors as scaling factors on the simulation:

$$\chi^2 = 2\sum_n \left(E_n - \mathcal{O}_n + \mathcal{O}_n \ln \frac{\mathcal{O}_n}{E_n} \right) + \sum_i \left(\frac{\epsilon_i}{\sigma_i} \right)^2$$

Expected from MC

Observed in data

$$E_n = \sum_j E_{n,j} (1 + \sum_i f_{n,j}^i \epsilon_i) \qquad \mathcal{O}_n = \sum_j \mathcal{O}_{n,j}.$$

- $n \rightarrow n^{th}$ analysis bin (520 analysis bins)
- $j \rightarrow j^{\text{th}}$ Super-K period (I to IV)
 - \rightarrow ith systematic error (155 error sources)
- $f_{n,i}^{i} \rightarrow$ fractional change in nth MC bin for a $1 \sigma^{i}$ variation on ith systematic error
- $\varepsilon_i \rightarrow i^{th}$ systematic error fitting parameter

Data vs MC with hierarchy

F. Blaszczyk - NuFact 2017

09/25/17

Hierarchy sensitive samples

1) Super-K atm. with θ_{13} free

- θ_{12} and $\Delta m_{^{2}12}^{_{12}}$ fixed, θ_{13} is not constrained

 χ^{2}_{min} (NH) = 571.7

- χ^{2}_{min} (IH) = 575.2
- \rightarrow better data-MC agreement for normal hierarchy
- Best fit $\sin^2 \theta_{23} = 0.584^{+0.039}_{-0.069} (0.550^{+0.043}_{-0.078})$
- → 2nd octant preferred
- Best fit $\delta_{CP} = 4.18^{+1.43}_{-1.64} (3.85^{+2.35}_{-2.15})$ \rightarrow weak constraint, CP-conserving value π included at ~1 σ
- Best fit $\sin^2 \theta_{13} = 0.019^{+0.028}_{-0.014} (0.008^{+0.017}_{-0.007})$

→ Non-zero θ_{13} can also be seen with atmospheric neutrinos (weak constraint)

2) Super-K atm. + θ_{13} fixed (sin² θ_{13} = 0.0219 ± 0.0012)

 $\Delta \chi^2 \equiv \chi^2_{min}(NH) - \chi^2_{min}(IH) = -4.4 \rightarrow$ normal hierarchy favored

- Best fit $\sin^2 \theta_{23} = 0.588^{+0.031}_{-0.067} (0.575^{+0.035}_{-0.085}) \rightarrow 2^{nd}$ octant preference strengthened
- Best fit $\delta_{CP} = 4.19^{+1.37}_{-1.59} (4.19^{+1.49}_{-1.63}) \rightarrow \sim 3\pi/2$, weak constraint
- Additional scaling parameter on electron density α (α = 0 is vacuum, α = 1 is standard e density)
- Normal hierarchy preferred with electron density consistent with standard matter

$$\Delta \chi^2 \equiv \chi^2_{\alpha=0} - \chi^2_{\min} = 5.2$$

 \rightarrow exclude vacuum oscillations at 1.6 σ level

2) Super-K atm. + θ_{13} fixed (sin² θ_{13} = 0.0219 ± 0.0012)

→ Good agreement with other experiments

3) Super-K atm. + θ_{13} fixed + T2K constraint

 Super-K is T2K far detector so only neutrino source differs: common reconstruction and NEUT-based simulation

• Use only published T2K beam flux bins : reweight atmospheric v MC using T2K beam flux

$\Delta \chi^2 = -5.2 \rightarrow$ normal hierarchy preference strengthened

• Best fit $\sin^2 \theta_{23} = 0.550^{+0.040}_{-0.059}$ (0.550^{+0.040}_{-0.059}) \rightarrow closer to maximal but still 2nd octant

• Best fit $\delta_{CP} = 4.89^{+0.84}_{-1.45}$ (4.54^{+0.99}_-0.96) \rightarrow still $\sim 3\pi/2$, stronger constraint

Mass hierarchy results significance

• CL_s method [A.L. Read J. Phys. G28 2693 (2002)]

$$CL_s = \frac{p_0(IH)}{1 - p_0(NH)}$$

• $p_0(IH)$ is the p-value to obtain, assuming IH is true:

 $\Delta \chi^2 (\text{NH} - \text{IH}) < \Delta \chi^2_{\text{data}}$

• Oscillation parameters allowed to vary within 90% C.L.

- Inverted hierarchy rejected with
 - $81.4\% < 1-CL_{s} < 94.9\%$ for SK, θ_{13} constrained
 - $91.5\% < 1-CL_s < 94.5\%$ for SK+T2K, θ_{13} constrained

		CL_s	
Fit	Lower 90%	C.L. Best Fit	Upper 90% C.L.
SK θ_{13} Constrained	0.186	0.071	0.051
SK+T2K θ_{13} Constrained	0.085	0.074	0.055
		S	K PRELIMINARY

Tau appearance analysis and cross-section measurement

v_{τ} in Super-Kamiokande

- τ leptons, produced by $\nu^{}_{\tau}$ CC interactions, have a short
- lifetime (~ 10^{-13} s) \rightarrow indirect detection in Super-K
- Decay into multiple particles → multi-ring events
- Main background : other neutrino interactions with multiple outgoing charged particles
 - \rightarrow single ring events are easily rejected

v_{τ} selection

 v_{τ} appearance probabilities

• Visible energy (E_{vis}) > 1.3 GeV

 $\rightarrow v_{\tau}$ CC signal efficiency = 86 % (BG rejection 77%)

F. Blaszczyk - NuFact 2017

10

'n

10

20

30

Visible Energy (GeV)

v_{τ} selection

- Neural network algorithm, using 7 discriminating variables:
- 1) Visible energy
- \rightarrow energy threshold for CC v_{τ} appearance and large τ mass
- 2) Maximum energy ring particle ID
- → τ events have showering particles = ID < 0
- 3) Number of decay electrons
- \rightarrow expect more, from pion decays
- 4) Maximum distance between primary vertex and decay electron
- $\rightarrow \mu$ from v_{μ} interaction are more energetic
- 5) Event sphericity
- $\rightarrow \tau$ hadronic decays more isotropic, S \rightarrow 1
- 6) Number of ring and ring fragment candidates
- 7) Fraction of total photoelectrons in the mostenergetic ring
- \rightarrow expected to be smaller

09/25/17

Neural network output

Downward v data

- Good separation between background and signal
- Good agreement between background simulation and downward going data
- \rightarrow no tau expected in the downward sample

 Performance example: for NN_{output} > 0.5, 76% of the signal is selected and 72% of the background is rejected

v_{τ} appearance search

Two-dimensional unbinned maximum likelihood fit:

v_{τ} appearance search results

$\textbf{CC} \, \textbf{v}_{\tau} \, \textbf{cross-section measurement}$

$$\sigma_{measured} = S_{\tau} \times \langle \sigma_{theory} \rangle$$

- S_T is a scaling factor and $\langle \sigma_{theory} \rangle$ is the flux-averaged theoretical CC v_t cross-section used in NEUT
- In this case $S_T = \alpha$ so

 $\sigma_{measured} = (1.47 \pm 0.32) \times \langle \sigma_{theory} \rangle$

 The flux-averaged theoretical cross-section is calculated to be 0.64 × 10⁻³⁸ cm² between 3.5 GeV and 70 GeV

 $<\sigma_{measured}> = (0.94 \pm 0.20) \times 10^{-38} \text{ cm}^2$

for flux averaged between 3.5 GeV and 70 GeV

 \rightarrow Agreement between theoretical and measured cross-sections at 1.5 σ level

Comparison to DONUT

- DONUT observed 9 CC v_{τ} events (1.5 BG)
- Mean energy is 111 GeV
- → CC deep-inelastic scattering is dominant
- Assume CC v_{τ} cross-section has linear dependence on neutrino energy

 $\sigma(E) = \sigma_{const} \cdot E \cdot K(E)$

- → extrapolate to SK energies
 <σ_{sK-DONUT}> = (0.37±0.18)×10⁻³⁸ cm²
- Lower than Super-K measurement

 $<\sigma_{_{SK}}> = (0.94 \pm 0.20) \times 10^{-38} \, cm^2$

 \rightarrow extrapolation missing contribution from other CC cross-sections

Summary

• Atmospheric neutrinos can be used to study several unresolved neutrino questions...

- θ_{13} non-zero observed
- Measured oscillation parameters in good agreement with other experiments
- All analyses show slight preference for normal mass hierarchy and for the second octant of θ_{23}

• No-tau appearance hypothesis excluded at 4.6σ level assuming normal hierarchy

- CC v_{τ} cross-section is (0.94 ± 0.20) × 10⁻³⁸ cm² between 3.5 GeV and 70 GeV
- Results will be published soon, two papers in preparation

The collaboration

~160 members, ~45 institutes

Back up

FC samples purities

Sample	Energy bins	$\cos \theta_z$ bins	CC ν_e	CC $\bar{\nu_e}$	$\mathrm{CC}~\nu_{\mu}+\bar{\nu_{\mu}}$	CC ν_τ	NC	Data	MC
Fully Contained	(FC) Sub-Gev								
e-like, Single-ring	5 o± momentum	10 in [1 1]	0.717	0.949	0.002	0.000	0 022	10204	10966-1
0 decay-e	$5 e$ momentum $5 e^{\pm}$ momentum	10 m[-1,1]	0.717	0.248	0.002	0.000	0.033 0.067	10294 1174	10200.1 1150.7
1 decay-e	<i>b e</i> momentum		0.805	0.019	0.108	0.001	0.007	1174	1100.7
μ -like, Single-ring	$5 u^{\pm}$ momentum	10 in [11]	0.041	0.013	0.750	0.001	0.186	28/2	2824 2
0 decay-e	$5 \mu^{-}$ momentum $5 \mu^{\pm}$ momentum	10 in [-1,1]	0.041	0.015	0.759	0.001	0.100	2045	2024.3
1 decay-e	$5 \mu^{-}$ momentum $5 \mu^{+}$	$10 \ln [-1, 1]$	0.001	0.000	0.972	0.000	0.027	8011	8008.7
2 decay-e	$5 \mu^-$ momentum		0.000	0.000	0.979	0.001	0.020	087	087.0
π° -like	~ + ,		0.000	0.000	0.015	0.000	0.050		F 7 1 0
Single-ring	$5 e^{\perp}$ momentum		0.096	0.033	0.015	0.000	0.856	578	571.8
Two-ring	$5 \pi^{\circ}$ momentum		0.067	0.025	0.011	0.000	0.897	1720	1728.4
Multi-ring			0.294	0.047	0.342	0.000	0.318	1682	1624.2
Fully Contained	(FC) Multi-GeV	7							
Single-ring									
ν_e -like	$4 e^{\pm}$ momentum	10 in [-1,1]	0.621	0.090	0.100	0.033	0.156	705	671.3
$\bar{\nu}_e$ -like	$4 e^{\pm}$ momentum	10 in [-1,1]	0.546	0.372	0.009	0.010	0.063	2142	2193.7
μ -like	$2 \ \mu^{\pm}$ momentum	10 in [-1,1]	0.003	0.001	0.992	0.002	0.002	2565	2573.8
Multi-ring									
ν_e -like	3 visible energy	10 in [-1,1]	0.557	0.102	0.117	0.040	0.184	907	915.5
$\bar{\nu}_e$ -like	3 visible energy	10 in [-1,1]	0.531	0.270	0.041	0.022	0.136	745	773.8
μ -like	4 visible energy	10 in [-1,1]	0.027	0.004	0.913	0.005	0.051	2310	2294.0
Other	4 visible energy	10 in [-1,1]	0.275	0.029	0.348	0.049	0.299	1808	1772.6
Dantially Contain	and (DC)								
Partially Contain	led (PC)	$10 \sin [10]$	0.084	0.029	0 890	0.010	0.045	566	570.0
Stopping Through asign	2 visible energy	10 in [-1,0]	0.084	0.052	0.829	0.010	0.045	000 0001	070.0 0000 0
1 nrougn-going	4 visible energy	$10 \ln [-1, 1]$	0.006	0.003	0.978	0.007	0.006	2801	2889.9
Upward-going M	uons (Up- μ)								
Stopping	3 visible energy	10 in [-1,0]	0.008	0.003	0.986	0.000	0.003	1456.4	1448.9
Through-going									
Non-showering		10 in [-1,0]	0.002	0.001	0.996	0.000	0.001	5035.3	4900.4
Showering		10 in [-1,0]	0.001	0.000	0.998	0.000	0.001	1231.0	1305.0

Data and MC comparisons

T2K vs Super-K T2K model

Sensitivity to mass hierarchy

Summary

Fit	Hierarchy	χ^2	$\sin^2 \theta_{13}$	$\sin^2 \theta_{23}$	$ \Delta m^2_{32,13} $ [eV ²]	δ_{CP}
SK θ_{13} Free	NH	571.7	$0.019\substack{+0.028\\-0.014}$	$0.584\substack{+0.039\\-0.069}$	$2.47^{+0.17}_{-0.28}$	$4.18^{+1.43}_{-1.64}$
	IH	575.2	$0.008\substack{+0.017\\-0.007}$	$0.550\substack{+0.043\\-0.078}$	$2.20\substack{+0.33 \\ -0.13}$	$3.85\substack{+2.35 \\ -2.15}$
SK θ_{13} Constrained	NH	571.7	_	$0.588\substack{+0.031\\-0.067}$	$2.50\substack{+0.13\\-0.20}$	$4.19^{+1.37}_{-1.59}$
	IH	576.1	—	$0.575\substack{+0.035\\-0.085}$	$2.50\substack{+0.08\\-0.37}$	$4.19\substack{+1.49 \\ -1.63}$
SK+T2K θ_{13} Constrained	NH	639.6	—	$0.550\substack{+0.040\\-0.059}$	$2.50^{+0.05}_{-0.13}$	$4.89\substack{+0.84 \\ -1.45}$
	IH	644.8	_	$0.550\substack{+0.037\\-0.049}$	$2.40^{+0.13}_{-0.06}$	$4.54\substack{+0.99 \\ -0.96}$

Systematics detail

Systematic Error			Fit Value (%)	σ (%)
Flux normalization	$E_{\nu} < 1 \text{ GeV}^{a}$		14.3	25
	$E_{\nu} > 1 \text{ GeV}^{b}$		7.8	15
$(\nu_{\mu} + \bar{\nu}_{\mu})/(\nu_{e} + \bar{\nu}_{e})$	$E_{\nu} < 1 \text{ GeV}$		0.06	2
	$1 < E_{\nu} < 10 \text{ GeV}$		-1.1	3
	$E_{\nu} > 10 \text{ GeV}^{c}$		1.6	5
$\bar{\nu}_e/\nu_e$	$E_{\nu} < 1 \text{ GeV}$		1.7	5
	$1 < E_{\nu} < 10 \text{ GeV}$		3.4	5
	$E_{\nu} > 10 \text{ GeV}^{d}$		-1.6	8
$\bar{\nu}_{\mu}/\nu_{\mu}$	$E_{\nu} < 1 \text{ GeV}$		0.23	2
	$1 < E_{\nu} < 10 \text{ GeV}$		2.9	6
	$E_{\nu} > 10 \text{ GeV}^{\text{e}}$		-2.9	15
Up/down ratio	$< 400 { m MeV}$	e-like	-0.026	0.1
		μ -like	-0.078	0.3
		0-decay μ -like	-0.286	1.1
	> 400 MeV	e-like	-0.208	0.8
		μ -like	-0.13	0.5
		0-decay μ -like	-0.442	1.7
	Multi-GeV	e-like	-0.182	0.7
		μ -like	-0.052	0.2
	Multi-ring Sub-GeV	e-like	-0.104	0.4
		μ -like	-0.052	0.2
	Multi-ring Multi-GeV	e-like	-0.078	0.3
		μ -like	-0.052	0.2
	PC		-0.052	0.2
Horizontal/vertical ratio	< 400 MeV	e-like	0.019	0.1
		μ -like	0.019	0.1
		0-decay μ -like	0.058	0.3
	> 400 MeV	e-like	0.271	1.4
		μ -like	0.368	1.9
		0-decay μ -like	0.271	1.4
	Multi-GeV	e-like	0.62	3.2
		μ -like	0.446	2.3
	Multi-ring Sub-GeV	e-like	0.271	1.4
		μ -like	0.252	1.3
	Multi-ring Multi-GeV	e-like	0.543	2.8
	-	μ -like	0.291	1.5
	PC		0.330	1.7
K/π ratio in flux calcula	tion ¹		-9.3	10
Neutrino path length			-2.17	10
Sample-by-sample	FC Multi-GeV		-6.5	5
	$PC + Stopping UP-\mu$		0.19	5
Matter effects			0.52	6.8

^a Uncertainty decreases linearly with $\log E_{\nu}$ from 25%(0.1 GeV) to 7%(1 GeV).

^b Uncertainty is 7% up to 10 GeV, linearly increases with log E_{ν} from 7%(10 GeV) to 12%(100 GeV) and then to 20%(1 TeV)

^c Uncertainty linearly increases with log E_{ν} from 5%(30 GeV) to 30%(1 TeV).

^d Uncertainty linearly increases with log E_{ν} from 8% (100 GeV) to 20% (1 TeV).

^e Uncertainty linearly increases with log E_{ν} from 6 % (50 GeV) to 40 % (1 TeV).

 $^{\rm f}$ Uncertainty increases linearly from 5% to 20% between 100 GeV and 1TeV.

F. Blaszczyk - NuFact 2017

Systematics detail

Systematic Error		Fit Value (%)	σ (%)
M_A in QE		-0.56	10
Single π Production, Axial Coupling		-4.5	10
Single π Production, C_{A5}		-3.0	10
Single π Production, BKG		-8.7	10
CCQE cross section ^a		6.6	10
$CCQE \ \bar{\nu}/\nu \ ratio^{a}$		9.3	10
$CCQE \ \mu/e \ ratio^{a}$		0.71	10
DIS cross section		-4.4	5
DIS model comparisons ^b		3.0	10
DIS Q^2 distribution (high W) ^c		8.2	10
DIS Q^2 distribution (low W) ^c		-5.8	10
Coherent π production		-8.6	100
NC/CC		12.1	20
ν_{τ} cross section		-13.9	25
Single π production, π^0/π^{\pm}		-20.2	40
Single π production, $\bar{\nu}_i/\nu_i$ (i=e, μ) ^d		-11.1	10
NC fraction from hadron simulation		-0.54	10
π^+ decay uncertainty Sub-GeV 1-ring	e-like 0-decay	-0.18	0.6
	μ -like 0-decay	-0.24	0.8
	e-like 1-decay	1.2	4.1
	μ -like 1-decay	0.71	0.9
	μ -like 2-decay	1.7	5.7
Meson exchange current ^e		-1.8	10
Δm_{21}^2 [27]		0.022	2.4
$\sin^2(\theta_{12})$ [27]		0.34	4.6
$\sin^2(\theta_{13})$ [27]		0.11	5.4

^a Difference from the Nieves [24] model is set to 1.0

^b Difference from CKMT [42] parametrization is set to 1.0
^c Difference from GRV98 [43] is set to 1.0
^d Difference from the Hernandez[44] model is set to 1.0
^e Difference from NEUT without model from [24] is set to 1.0

Systematics detail

			SK-I		SK-II		SK-III		SK-IV	
Systematic Error		1	Fit Value	σ	Fit Value	σ	Fit Value	σ	Fit Value	σ
FC reduction			-0.008	0.2	0.005	0.2	0.068	0.8	0.68	1.3
PC reduction			0.007	2.4	-3.45	4.8	-0.012	0.5	-0.78	1
FC/PC separation			-0.10	0.6	0.077	0.5	-0.13	0.9	0.0004	0.02
PC stopping/through-going sepa	ration (bottom)		-15.8	23	-2.4	13	-0.31	12	-1.5	6.8
PC stopping/through-going sepa	ration (barrel)		3.8	7	-5.7	9.4	-13.9	29	-0.40	8.5
PC stopping/through-going sepa	ration (top)		8.5	46	-3.0	19	-12.6	87	-24.1	40
Non- ν background	Sub-GeV μ -like		0.010	0.1	0.065	0.4	0.106	0.5	-0.011	0.02
	Multi-GeV μ -like		0.037	0.4	0.065	0.4	0.106	0.5	-0.011	0.02
	Sub-GeV 1-ring 0-decay μ -like		0.010	0.1	0.049	0.3	0.085	0.4	-0.052	0.09
	PC		0.019	0.2	0.114	0.7	0.381	1.8	-0.282	0.49
	Sub-GeV <i>e</i> -like (flasher event)		0.069	0.5	0.000	0.2	-0.004	0.2	-0.000	0.02
	Multi-GeV e-like (flasher event)	0.013	0.1	0.000	0.3	-0.013	0.7	-0.000	0.08
	Multi-GeV 1-ring e-like		3.6	13	-5.2	38	-1.0	27	2.4	18
	Multi-GeV Multi-ring e-like		3.8	12	3.8	11	0.74	11	0.40	12
Fiducial Volume			-0.86	2	0.10	2	0.22	2	-1.5	2
Ring separation	< 400 MeV	e-like	0.45	2.3	-1.08	1.3	0.80	2.3	0.95	1.6
		μ -like	0.14	0.7	-1.91	2.3	1.04	3	1.79	3
	> 400 MeV	e-like	0.078	0.4	-1.41	1.7	0.45	1.3	-0.60	1
	N 10 0 11	µ-like	0.14	0.7	-0.582	0.7	0.208	0.6	-0.36	0.6
	Multi-GeV	e-like	0.72	3.7	-2.16	2.6	0.45	1.3	-0.60	1
	Makini and Gal	μ -like	0.33	1.7	-1.41	1.7	0.35	1	0.72	1.2
	Multi-ring Sub-GeV	e-like	-0.68	3.5	3.16	3.8	0.45	1.3	1.13	1.9
	Mahi dan Mahi GaW	μ -like	-0.88	4.5	0.82	8.2	-0.90	2.6	1.37	2.3
	Multi-ring Multi-Gev	e-nke	-0.60	3.1	1.58	1.9	-0.38	1.1	0.54	0.9
Dantiala identification (1 mmm)	Sub CaV	μ -like	-0.80	4.1	0.000	0.8	-0.73	2.1	-1.43	2.4
rarticle identification (1 ring)	Sub-Gev	e-like	0.039	0.23	0.229	0.00	0.000	0.20	-0.125	0.20
	Multi CoV	a like	-0.031	0.10	0.082	0.0	-0.038	0.19	0.097	0.22
	Multi-Gev	<i>u</i> -like	-0.032	0.15	-0.000	0.24	0.002	0.31	0.155	0.35
Particle identification (multi-ring)Sub-GeV	e-like	-0.032 -0.22	3.1	-3.43	6	3 50	9.5	-2.26	4.2
Tarticle identification (mater-ring	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	u-like	0.046	0.66	3 1 4 3	2.5	-1.92	5.2	0.86	1.6
	Multi-GeV	e-like	0.45	6.5	5 56	9.7	-1.80	49	-1.78	3.3
		<i>u</i> -like	-0.20	2.9	-2.23	3.9	1.00	2.7	0.86	1.6
Energy calibration		<i>p</i>	-0.76	3.3	-0.89	2.8	0.06	2.4	0.09	2.1
Up/down asymmetry energy cali	bration		0.26	0.6	0.24	0.6	0.74	1.3	-0.15	0.4
$UP-\mu$ reduction	Stopping		-0.091	0.7	-0.090	0.7	0.162	0.7	0.087	0.5
, · · · · · · · · · · · · · · · · · · ·	Through-going		-0.065	0.5	-0.094	0.5	0.115	0.5	0.053	0.3
$UP-\mu$ stopping/through-going set	paration		0.003	0.4	-0.004	0.6	0.030	0.4	-0.102	0.6
Energy cut for stopping UP- μ			-0.043	0.9	-0.122	1.3	0.957	2	-0.122	1.7
Path length cut for through-goin	g UP- μ		-0.416	1.5	-0.825	2.3	0.993	2.8	1.47	1.5
Through-going UP- μ showering s	separation		7.53	3.4	-4.68	4.4	2.89	2.4	-3.30	3
Background subtraction for UP-	u Stopping ^a		10.0	16	-3.1	21	-4.9	20	-6.7	17
	Non-showering ^a		-3.6	18	-3.6	14	1.4	24	2.1	17
	Showering ^a		-12.3	18	-15.7	14	0.1	24	-0.9	24
$\nu_e/\bar{\nu}_e$ Separation			-0.98	7.2	7.02	7.9	0.43	7.7	2.50	6.8
Sub-GeV 1-ring π^0 selection	$100 < P_e < 250 \text{ MeV/c}$		1.7	9	6.9	10	0.96	6.3	5.23	4.6
	$250 < P_e < 400 \text{ MeV/c}$		1.7	9.2	9.7	14	0.75	4.9	3.4	3
	$400 < P_e < 630 \text{ MeV/c}$		1.1	16	7.6	11	3.7	24	13.7	13
	$630 < P_e < 1000 \text{ MeV/c}$		2.6	14	11.1	16	1.3	8.2	19.4	17
a . a	$1000 < P_e < 1330 \text{ MeV/c}$		2.2	12	6.8	9.8	1.7	11	27.3	24
Sub-GeV 2-ring π^0			1.3	5.6	-2.7	4.4	1.6	5.9	-0.72	5.6
Decay-e tagging			-3.3	10	-1.0	10	0.9	10	1.3	10
Solar Activity			-1.8	20	20.0	50	2.7	20	0.6	10

^a The uncertainties in BG subtraction for upward-going muons are only for the most horizontal bin, $-0.1 < \cos \theta < 0$.

F. Blaszczyk - NuFact 2017

Tau decay modes

Decay mode	Branching ratio (%)
$\frac{1}{\mu^- \bar{\nu}_\mu \nu_\tau}$	17.41 ± 0.04
$e^- \bar{\nu}_e \nu_{\tau}$	17.83 ± 0.04
$\pi^- \nu_{ au}$	10.83 ± 0.06
$\pi^-\pi^0 u_ au$	25.52 ± 0.09
$\pi^- 2 \pi^0 u_{ au}$	9.3 ± 0.11
$\pi^- 3 \pi^0 u_{ au}$	1.05 ± 0.07
$\pi^-\pi^+\pi^- u_ au$	8.99 ± 0.06
$\pi^-\pi^+\pi^-\pi^0 u_ au$	8.99 ± 0.06
$h^-\omega u_ au$	2.00 ± 0.08

Flux averaged cross-section

$$\langle \sigma_{theory} \rangle = \frac{\sum_{\nu_{\tau}, \bar{\nu}_{\tau}} \int \frac{d\Phi(E_{\nu})}{dE_{\nu}} \sigma_{theory} E_{\nu} dE_{\nu}}{\sum_{\nu_{\tau}, \bar{\nu}_{\tau}} \int \frac{d\Phi(E_{\nu})}{dE_{\nu}} dE_{\nu}}$$

