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Introduction

The MICE Experiment is currently evaluating several key measurements:

1. High precision emittance measurement from individual muons tracks,

2. The first measurement of emittance reduction through a LiH absorber,
[ See F. Drielsma ]

3. An entire programme of materials physics studies, [ See J. Nugent ]

4. A detailed study of emittance evolution in the MICE Cooling Channel.

| will focus on 1. and 2., but do please see the excellent work presented by our collaborators.
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Defining Emittance

The volume of phase-space occupied by an
ensemble of particles.

3w
In MICE we focus on the 4-dimensional, % oF
transvserse, normalised, RMS emittance, 22;:-
€1, which corresponds to the central 1- 2f
sigma of a Gaussian distribution in x, py, "“’;l-
Y, Py space. so:
Calculated from the covariance matrix of _ o
the ensemble X, and the muon mass, m. A typical phfase-space projection
1 in x-py.
I
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Defining Amplitude

Analysing emittance evolution on a muon-
by-muon basis.

The Single Particle Amplitude defined as
the scalar distance in phase-space of a
particle (with vector v) from the centre of
the ensemble (with covariance matrix X).

Al = EJ_VTE_IV

“AL (mm] Imperial College
5 London



Amplitude and Emittance

To demonstrate cooling, we can analyse both RMS emittance
measurements and amplitude distributions.

RMS Emittance, Cooling:

Net decrease in the RMS occupied
phase-space volume.

Can be affected by high field gradients
and hard scattering events.

Amplitude Distribution, Cooling:

Net migration of particles from higher
amplitudes to lower amplitudes.

Can remove tail effects and examine

the core of the beam.
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Analysing the MICE Cooling Channel
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The Experiment

Upstream Spectrometer Downstream Spectrometer

LiH Absorber

Beam In Beam Out
Upstream Downstream
PID # I| PID
Magnet Coils Cell Non-Operational

- —

Net migration of particles from higher amplitudes to lower amplitudes.
An increase in core density.
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The Experiment
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The magnetic lattice has been carefully
designed within the hardware constraints 2
of the magnets.
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Selection and Reconstruction
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Analysis Process

Trackers Secondaries Aperture Tracking Track Matching
CKOV - # - # -
KL Calorimeter Time-of-Flight Scattering Muon Decay Global Fitting

Initial Optics Emittance

i

Amplitude Distribution
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Global Reconstruction

match by At [

match by At
|
N e— - -
N\ awvi
(I e—

Use reconstruction from all
detectors,

Involves very precise tracking
through CAD geometries,

Predict which tracks scattered
and scraped,

Ensures a “clean” muon sample.

[simulation]
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Event Selection

Selecting Good Muons:
e Single tracker events,
e Muonic time of flight,
e Good reconstruction in all detectors,

e No apertures scraped.
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Beam Selection

e Accept/reject sampling or statistical
weighting,

—1mm

MICE preliminary
[simulation] —3mm

Arbitrary

e Select a different amplitude distribution,

<4
@

e Select a matched beam from an
unmatched one.

Filamentation -
a#0

\ .
SOAL [mmG]0 . \ ﬂ"
A rigorous proceedure is used to select a Matched *ﬁ
matched beam for the individual magnetic @ -
lattice. -
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Recent Results
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Recent Results

| will present the most recent results from two of the key analyses for MICE:

The Precise Measurement of Beam Emittance

Precise calculation of the normalised emittance within the upstream tracker.

A Measurement of Emittance Evolution through a LiH Absorber

Comparison of the upstream and downstream amplitude distributions for a
3 mm beam and a 6 mm beam (nominal normalised emittance).
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Precise Measurement

Time-of-flight counters used for primary
event selection,

Upstream spectrometer used for
emittance reconstruction,

Single-track events with a muonic time of

flight and a good reconstruction,

Analyse beam in 8 MeV/c momentum
bins, twice the momentum uncertainty,

Statistical and systematic errors evaluated
from all correlations in covariance matrix.

17

of Beam Emittance
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Measurement of Emittance Evolution

Nominal 3mm Beam
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Conclusions

1. Direct Measurement of Emittance Using the Scintillating Fibre Trackers

e Demonstrated an emittance measurement with single muons,
e Acheived small statistical and systematic errors.

2. Measurement of Emittance Evolution through LiH Absorber

o First results of evolution of amplitude distribution have been presented,
o Characteristic effects of heating and emittance equilibrium demonstrated,
e Final dataset, 10 mm nominal emittance, currently being finalised.

3. Liquid Hydrogen Data

e Currently being recorded. ..
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Thank you for your attention.

Watch this space! —
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