

MICE Experiment Status and Prospects

J. Pasternak, Imperial College London / ISIS - RAL- STFC, on behalf of MICE Collaboration

29.09.2017, nufact'17, Uppsala

Outline of the talk

- Motivation
- •Principles of ionization cooling
- •MICE building blocks
- •MICE Step IV
- Emittance measurement
- Data taking
- Possible upgrade plans
- Conclusion

Motivations for using muon beams (1)

- Muons as elementary leptons ~200 times heavier than electrons offer possibility to be used for colliding beam experiments
 - Allowing to avoid a large QCD background known in hadron colliders
 - Offering a full CM energy for creating new states (in contrary to hadron colliders)
 - Rate of emission of synchrotron radiation is highly suppressed -> allows to build compact collider facility
 - This also suppresses beamstrahlung -> allows to preserve the high quality beam
 - Large m_{μ} provides large coupling to the Higgs mechanism. The resonant Higgs production at the s-channel is possible.

Sizes of various proposed colliders versus FNAL site

- •Only Muon Collider would fit into Existing lab boundaries
- It will be able to use high quality beams

Motivations for using muon beams (4)

- Muon beams are important for particle physics
 - Anomalous magnetic moment (g-2) a possible sign of BSM physics
 - Searches for Lepton Flavour Violation -> complementary test of SM at a very high mass scale
 - Provide a high quality neutrino source -> the Neutrino Factory

Challenges for using muon beams

- Muon beams are unstable (muon lifetime at rest ~2.2 μ s)
 - All beam manipulations (capture, cooling, acceleration, collisions) have to be made very fast
- Muons are produced as tertiary beam $(p \longrightarrow \pi \longrightarrow \mu)$
 - Initial intensity and beam quality is rather weak

Challenges for using muon beams (solution)

- Muon beams are unstable (muon lifetime at rest ~2.2 μ s)
- Muons are produced as tertiary beam ($p \rightarrow \pi \rightarrow \mu$)

- Use ionization cooling, which is the only technique fast enough!
- Use high power proton driver (see C. Plostinar's talk)
- Develop rapid accelerators (see A. Bogacz's talk)

Neutrino Factory, IDS-NF Design

- Provide 10²¹ muon decays per year toward a far detector
- Decays from 10 GeV muon beam (5 GeV – NuMax)
- Facility, which can provide precision measurements of neutrino oscillation parameters far beyond of conventional beams.
- Ionization cooling channel is an essential ingredient of the facility in order to obtain high intensity keeping the accelerator aperture reasonable in size.

First steps towards the Neutrino Factory - nuSTORM

- Novel source of neutrinos from both muon decay
 Neutrinos from pion decay also available
- Proof of principle for the Neutrino Factory concept
- Precision measurement of neutrino interactions
- May serve as R&D facility for a future Muon Collider
- Does not require muon cooling and can be based on existing technology and has affordable price.

Neutrino Factory/Muon Collider

Neutrino Factory (NuMAX) Cool-Acceleration μ Storage Ring v Factory Goal: Front End **Proton Driver** $10^{21} \mu^+ \& \mu^- per year$ ing within the accelerator acceptance 5 GeV Capture Sol. Decay Channel 0.2 - 1**AW-Class Target** 1-5 Phase Rotator Cooling **3uncher** SC Linac Accumulator **Buncher** GeV GeV u-Collider Goals: 281m 126 GeV ⇒ nitial ~14,000 Higgs/yr Accelerators: Single-Pass Linacs Multi-TeV ⇒ Lumi > 10³⁴cm⁻²s⁻¹ Share same complex **Muon Collider** Acceleration **Collider Ring** Front End Proton Driver Cooling E_{COM}: Higgs Factory Charge Separator Initial Cooling MW-Class Target
Capture Sol. Phase Rotator Decay Channel Buncher Final Cooling 6D Cooling to Accumulator Buncher Combiner 5D Cooling SC Linac ~10 TeV Bunch Merge Accelerators: Linacs, RLA or FFAG, RCS

For the Muon Collider cooling is absolutely essential

What is Muon Ionization Cooling?

- Energy loss in the absorber reduces both p_1 and p_{τ}
- Scattering heats the beam
- RF cavities restore p₁ only
- The net effect is the reduction of beam emittance cooling (strong focusing, low-Z absorber material and high RF gradient are required)

Cooling
$$\frac{d\epsilon_n}{ds} \sim -\frac{1}{\beta^2} \left\langle \frac{dE_\mu}{ds} \right\rangle \frac{\epsilon_n}{E_\mu} + \frac{1}{\beta^3} \frac{\beta_\perp (0.014 \text{GeV})^2}{2E_\mu m_\mu L_R}$$

Cooling Heating

 $d\epsilon_n/ds$ is the rate of change of normalised-emittance within the absorber; β , E_μ and m_μ the muon velocity, energy, and mass, respectively; β_\perp is the lattice betatron function at the absorber; L_R is the radiation length of the absorber material.

Motivation

MICE is the

Muon Ionization Cooling Experiment

MICE is a proof of principle experiment to demonstrate that we can "cool" a beam of muons.

MICE: Collaboration

Over 100 collaborators from >10 countries and ~30 institutes.

MICE: Muon Ionization Cooling Experiment

- MICE Goals:
 - Design, build, commission, and operate a realistic section of cooling channel
 - Measure its performance in a variety of modes of operation and beam conditions
 - Measure material properties of potential absorbers (LiH and liquid hydrogen)

...results will be used to optimize Neutrino Factory, Muon Collider and future high brightness muon beam designs.

Principles of MICE Experiment

- Target produce pions (using ISIS beam)
- Beamline create beam of muons
- Particle ID verify/tag muons (before/after)
- •Diffuser create proper beam emittance
- •Trackers measure emittance (before/after) •Absorber (LH₂ or LiH) – cooling
- •RF re-establish longitudinal momentum
- (unfortunately not currently on our plan (2) •Software and computing – use for MC simulations and data analysis

Where is MICE located?

RAL, Home of MICE

ISIS:

•One of the world's fastest synchrotrons (50 Hz) •Produces 800 MeV proton beam with ~250 kW power •Beam is used mainly for spallation neutron and muon production •ISIS is equipped with internal target to feed MICE!

MICE Beamline

MICE PID: Detectors

<u>Upstream PID:</u> <u>discriminate p, ·, ·</u> •Time of Flight – ToF0 & ToF1 •Threshold Cerenkov

Downstream PID:

<u>reject decay electrons</u>
Time of Flight - ToF2
Kloe-light Calorimeter - KL
Electron-Muon Ranger -EMR

The Trackers

- Two scintillating fibre trackers, one upstream, one downstream of the cooling channel.
- Each within a spectrometer solenoid producing a 4T field.
- Each tracker is 110 cm in length and 30 cm in diameter.
- 5 stations
 - varying separations 20-35 cm (to determine the muon p_{T}).
- 3 planes of fibres per station each at 120°.
- LED calibration system.
- Hall probes.
- Position resolution 470µm.

The Detectors **Electron Muon** Time of flight: Ranger: TOF0,1 and 2 West Wal

Cerenkov: CkoVa CkoVb Trackers

KLOE-Light: KL

Principles of MICE phase space reconstruction

Emittance Calculation

The 4D normalised RMS

transverse emittance is

defined as
$$\epsilon_n = \frac{1}{m_\mu} \sqrt[4]{\det \Sigma}$$

And $\sigma^2_{ij} = \langle ij \rangle - \langle i \rangle \langle j \rangle$ the covariance of i and j.

Software and Computing

Home made simulation and analysis framework

User

C++ framework wrapped in a python interface.

Developed by the collaboration for simulation and analysis of MICE.

Emittance Measurement First Direct Measurement

- Measurement only in Upstream Tracker: to measure the beam at the input to Step IV channel demonstrating the power of the technique.
- Data taken in October 2015
 - 200 MeV/c positive muon input beam
 - 19076 good muon tracks acquired
- This run was used to characterise the MICE muon beam and validate the tracker reconstruction.

First Direct Measurement of Emittance

Design Optics in Cooling Channel

Beam incoming from beam line, optimised for transmission, passes through variable thickness high-Z diffuser to increase emittance above the equilibrium value in a controlled way at the entrance to the Channel.

- Optics of the channel assumes matched beam (α =0) in both upstream and downstream solenoids.
 - To maximise transmission.
 - To minimise emittance growth due to mismatch.
 - In practice this condition is met only approximately, but a matched beam sample can be selected with sufficient statistics.
- Small beta waist is created with the help of Matched Coils and AFC at absorber (centre).
 - Solenoid and flip modes are proposed and used for data taking.
- Optics can only be approximately symmetric due to energy loss and large momentum spread.

Beam Optics: Data Taking

- Failure of QPS during training caused one of the Matching Coils in SSD to be inoperable.
- This caused beam mismatch and a decrease in transmission, which could be partially compensated.
 - Compensation required operation with reduced field in SSs ($4T \rightarrow 3T$)
 - As an effect the optics is non-symmetric
- In the downstream solenoid, the second match coil (M2D) was not operated as a precaution.
 - Operation with M2D on is foreseen in October.

Particle Triggers Over Time

Cooling With Liquid Hydrogen

- LH₂ system installed and commissioned with Neon.
- Filling successfully accomplished this week!
- Data taking with LH₂ started!
- Exciting publications in preparation and to come!

Production condenser

MICE Step IV Upgrade

- •Upgrade to DEMO fully designed
 - Very good performance
 - •RF cavities tested and constructed in the US
 - •Power sources available and tested in the UK
 - •Tracker support vessel, first build stage complete.
- •IHEP Protvino, Russia is potentially interested as a host laboratory

Scientific output of MICE

- Several papers is preparation
- A very important output is an unique inside into material properties of absorbers (mainly LiH and liquid hydrogen) – see J. Nugent's talk
- The main aim of MICE is muon beam cooling see talks by C. Hunt and F. Drielsma
- Stay tuned for a rapid communication on our results very soon!

Conclusions

- MICE is taking data in Step IV configuration
 LiH absorber data are collected
 Liquid hydrogen has been started this week!
- Important scientific outputs are expected
 - Testing Multiple Scattering and energy loss models in absorber materials (LiH and liquid hydrogen)
 - First results of normalised emittance evolution in a muon Cooling Channel
- MICE will measure factors that determine performance of ionisation cooling lattice, measure emittance evolution along the channel and seek to observe the reduction in normalised emittence.
- 6D/ultimate cooling demonstration is needed!