Results and Prospects from Atmospheric and Solar Neutrinos

Yusuke Koshio Okayama University

19th International Workshop on Neutrinos from Accelerators (NuFact2017) Uppsala university, 25-30 September, 2017

Request from committee

This overview talk should cover all large neutrino detectors projects both for atmospheric and solar neutrino..

Atmospheric and solar neutrinos in neutrino oscillation

Mixing angle : Maki-Nakagawa-Sakata Matrix

 $\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$ $\begin{array}{c} \text{Atm. and Acc.} \\ \theta_{23} \sim 45 \pm 5^{\circ} \\ |\Delta m_{32}^{2}| = 2.4 \times 10^{-3} \text{eV}^{2} \\ \end{array} \begin{array}{c} \text{Reactor and Acc.} \\ \theta_{13} \sim 9^{\circ} \\ \end{array} \begin{array}{c} \text{Solar and KamLAND} \\ \theta_{12} \sim 34 \pm 3^{\circ} \\ \Delta m_{21}^{2} = +7.6 \times 10^{-5} \text{eV}^{2} \\ \end{array}$

 δ cp and Mass hierarchy of 2-3 are unknown Atmospheric, Accelerator, Reactor

Atmospheric and solar neutrinos play crucial role for determining the neutrino oscillation parameters

Atmospheric neutrino

Atmospheric neutrinos

Cosmic rays strike air nuclei and the decay of the out-going hadrons gives neutrinos. ✓ Flux measurement by SK ✓ Model calculation is consistent with data.

26 Sep., 2017

5

Super-Kamiokande

Phase	Period	Fiducial vol. (kton)	# of PMTs	Energy thr.(MeV)
SK-I	1996.4 ~ 2001.7	22.5	11146 (40%)	4.5
SK-II	2002.10 ~ 2005.10		5182 (20%)	6.5
SK-III	2006.7 ~ 2008.8	22.5 (>5.5MeV) 13.3 (<5.5MeV)	11129 (40%)	4.5
SK-IV	2008.9 ~	22.5 (>5.5MeV) 16.5 (4.5 <e<5.5) 8.9 (<4.5MeV)</e<5.5) 		3.5

(coverage) (Kin. energy)

Running and improvements over 20 years

Super-Kamiokande as an atmospheric neutrino detector

3 flavor neutrino oscillation analysis

Preliminary

Parameter determination (SK+T2K)

 $\checkmark \Delta \chi^2 = \chi^2_{\text{NH}} - \chi^2_{\text{IH}} = -5.2$

✓ Probability for IH is 0.024 (sin² θ_{23} =0.6) and 0.001 (sin² θ_{23} =0.4), while for NH is 0.43 (sin² θ_{23} =0.6) Friday afternoon: F.d.M.Blaszczyk

26 Sep., 2017

Preliminary

τ neutrino appearance

Hyper-Kamiokande (future)

Atm. and acc. ν measurements in Hyper-K will make much more precise determination for mass hierarchy, octant θ_{23} , δ be available.

See E. O'Sullivan and C. Bronner's presentation in more detail

DUNE (future)

Event rate: 14k e-like, 20k μ -like fully contained for 350kt-year exposure

12

IceCube DeepCore

- \cdot 8 dedicated string fill ~10⁷ m³ of ice with a typical spacing of 70m.
- Sensors are concentrated in the clearest deep ice, with a denser 7m vertical spacing.
- Energy range is 5.6 to 56 GeV, in which Deep Inelastic Scattering is dominant.

IceCube DeepCore

J. van Santen at ICRC 2017

IceCube-Gen2 (future)

A wide band neutrino observatory (MeV – EeV) using several detection technologies – optical, radio, and surface veto – to maximize the science

J. van Santen at ICRC 2017

IceCube-Gen2 (future)

26 Sep., 2017

J. van Santen at ICRC 2017

IceCube-Gen2 (future)

ANTARES

KM3NeT-O

θ ₁₃ [°]	8.42	$\mu = 8$
θ ₁₂ [°]	34	$\mu = 3$
$\Delta M^2 [10^{-3} \text{ eV}^2]$	$\mu = 2.4, \ \sigma = 0.05$	$\mu = 2$

	parameter	true value distr.	initia
• St	θ ₂₃ [°]	{40, 42, , 50}	unifo
re	θ ₁₃ [°]	8.42	$\mu = 3$
of	θ_{12} [°]	34	$\mu = 3$
	$\Delta M^2 [10^{-3} \text{ eV}^2]$	$\mu = 2.4, \ \sigma = 0.05$	$\mu = 2$
• Se	$\Delta m^2 [10^{-5} \text{ eV}^2]$	7.6	$\mu = 1$
sianificance [o]	δcp [°]	0	unifo
	overall flux factor	1	$\mu = 1$
	NC scaling	1	$\mu = 1$
	$\nu/\bar{\nu}$ skew	0	$\mu = 0$
	μ/e skew	0	$\mu = 0$
	energy slope	0	$\mu = 0$
			U
rarc	3		<u>.</u>
hie	2		μογ
3SS	¹ KM3NeT ³ y	rs	
Ma	40 42 44 θ_{23} [def	46 48 50 grees]	
	Friday afternoo	on: M.Circella	

NUFACT2017

Summary of atmospheric ν

- Full 3 flavor oscillation analysis is performed to extract mass hierarchy, Octant θ_{23} , δ_{CP} .
- Tests of various non-standard scenarios are possible.
- Several large detector experiments are proposed, and determine those parameters in near future.

Solar neutrino

Solar neutrinos

Super-Kamiokande as a solar neutrino detector

neutrino-electron elastic scattering

$$v + e^- \rightarrow v + e^-$$

✓ Find solar direction ✓ Realtime measurements - day-night flux differences - seasonal variation Energy spectrum

Super-Kamiokande as a solar neutrino detector

Times (ns)

NUFACT2017

26 Sep., 2017

within 0.5% precision

Motivation of the measurement

NUFACT2017

25

26 Sep., 2017

Neutrino oscillation

Day/Night asymmetry

Preliminary

Recoil electron spectrum

28

Preliminary

Yearly solar neutrino flux

Solar neutrino rate measurement in SK is fully consistent with a constant solar neutrino flux emitted by the Sun

Borexino

Liquid scintillator 270 t PC+PPO (1.5g/l) in nylon vessel (R=4.25m)

Gran Sasso in Italy since 2007 (10th years anniversary)

https://agenda.infn.it/conferenceDisplay.py?confld=12485

neutrino-electron elastic scattering

$$v + e^- \rightarrow v + e^-$$

✓ High light yield

- lowering energy threshold
- good energy resolution
- ✓ Realtime measurements
- \checkmark No neutrino directional information
 - background reduction and
 - understanding are critical

Borexino

Extract the each solar neutrino rate and the BG contribution from the spectrum

Borexino

Astrophysical point of view

BX results seem to give a hint towards the High Metallicity hypothesis in spite of the large theoretical error

26 Sep., 2017

Solar neutrinos in Hyper-K

Solar neutrinos in Hyper-K

Sensitivity of Day/Night flux asymmetry

Summary of solar ν

- Current running detectors are Super-Kamiokande and Borexino.
 - Indication of Day-Night asymmetry has been found in Super-K at 3 σ level.
 - Precise measurements of pp, ⁷Be, pep has succeeded in Borexino
- 2σ tension between solar and KamLAND Δm_{21}^2 is seen. Day-night measurement in Hyper-K can determine the parameter.

Super-K Gd

Dissolve Gadolinium into Super-K

J.Beacom and M.Vagins, Phys.Rev.Lett.93(2004)171101

First observation of neutrinos Gd in emitted from past supernovae Water FACT2017

Super-K Gd

, Tank open on June 1st, 2018

Around this time next year

Open the Super-K tank since 2006

Around this time next year

Open the Super-K tank since 2006

26 Sep., 2017