Status of DUNE

Michel Sorel (IFIC Valencia) NUFACT 2017, Uppsala (Sweden), September 2017

- Despite impressive results and projections from current LBL experiments, many questions will **NOT** be **firmly** answered!
- Need new neutrino experiments with larger exposures and better precision
- Future large underground neutrino detectors will also allow us to develop very rich astroparticle physics program

DUNE at LBNF

Deep Underground Neutrino Experiment at the Long Baseline Neutrino Facility

- High intensity, wide-band, neutrino beam from Fermilab
- Highly capable neutrino near detector at Fermilab
- 40-kt fiducial mass far detector at SURF based on LAr-TPCs

DUNE Collaboration

• 1000+ collaborators from 176 institutions in 31 countries

- **DUNE**: a fully international science collaboration
- LBNF: US-hosted project with international contributions

LBNF/DUNE at NUFACT 2017

- This talk:
 - Overview of DUNE science
 - Overview of LBNF/DUNE project
- Many more details in three other experimental talks...
 - Mon 25/09: Tristan Davenne, "Status of the LBNF Beamline" (WG3)
 - Thu 28/09: Nick Grant, "DUNE Oscillation Physics" (WG1)
 - Fri 29/09: Hongyue Duyang, "DUNE Near Detector" (WG1+WG2)

...and in phenomenological talks!

DUNE Science

Primary physics program

Neutrino oscillations CP violation in the v sector

- Neutrino mass hierarchy
- Precision oscillation measurements
- Testing of 3v paradigm

Proton decay

- Predicted by BSM theories, but not yet seen
- Unique sensitivity to SUSY-favored modes (p $\rightarrow \bar{v} K^+$)

Supernova neutrinos

- Neutrino burst from galactic core-collapse supernova
- Unique sensitivity to supernova ve's

Neutrino oscillation measurement strategy

Sensitivity to neutrino mass hierarchy

• 5 σ sensitivity after 300 kt·MW·yr exposure (7 yr), for any δ_{CP}

Sensitivity to leptonic CP violation

• 5 σ sensitivity after 300 kt·MW·yr exposure (7 yr), for $\delta_{CP} = -\pi/2$

Sensitivity to θ₂₃ octant

• 5σ sensitivity after 300 kt·MW·yr exposure (7 yr), at NuFit's $sin^2\theta_{23}$ best-fit value and for 80% fraction of δ_{CP} values

Effect of systematic uncertainties

- Width of sensitivity bands: $1-3\% v_e$ signal normalisation uncertainty
- Small impact on MH. For CP, important to keep uncertainty at ≤2%

Nucleon decay searches in DUNE

- DUNE's excellent particle identification and tracking capabilities
 → cast as wide a net as possible for nucleon decay searches
- Unique sensitivity to modes with kaons, e.g. p $\rightarrow \bar{v} K^+$

Supernova neutrino bursts

- Vast information from flavour-energy-time profile of events
- Unique sensitivity to v_e's

Additional scientific opportunities

Ancillary science program

(Will be pursued)

- Other accelerator-based neutrino flavor transitions
 - NSIs, sterile neutrinos, v_τ appearance
- Physics with atmospheric neutrinos (oscillations, BSM)
- n-nbar oscillation searches
- Neutrino interaction physics program at near detector
- Search for signatures of dark matter

Additional scientific objectives

(Might be pursued)

- Oscillations and stellar physics using solar neutrinos
- Detection of the diffuse supernova neutrino flux
- Measurement of HE neutrinos from astrophysical sources

LBNF/DUNE Project

Groundbreaking at SURF

- LBNF/DUNE project approved by US DOE in 2016 ("CD-3a")
- \$330M for construction work: infrastructures, caverns
- SURF reliability projects underway now, CD-3a starting in 2018

SURF planned caverns

Infrastructures at SURF

Cryostat

10.000

Crvostat 3

Central utility cavern

- Staged construction with 4 cryostats
- Each cryostat holds 17.1-kt LAr
- Membrane cryostat design by CERN-FNAL

Crvostat 4

150 m

Cryostat 2

Far detector technology: LAr-TPCs

- Excellent imaging from mm-scale resolution
- Accurate calorimetry from fully active volume and large ionisation signal
- Particle identification from dE/dx, event topology

LAr-TPC readouts

Dual phase: amplification + x/y strip readout

Also, scintillation light readout for event t₀ and improved reconstruction

Prototyping activities

2018 ProtoDUNEs at CERN

3x1x1 m³

July 2017: first cosmic ray tracks!

CERN Neutrino Platform

Large-scale LAr-TPC demonstrators in charged particle test beams

ProtoDUNEs

• 770 t total LAr mass each (ICARUS: 600 t)

ProtoDUNE-SP

ProtoDUNE-DP

Far detector modules

• Four FD modules, 17.1/13.6/11.6 kton total/active/fiducial LAr mass each, housed in four identical cryostats

- If ProtoDUNEs successful, plan for 1st (2nd) module based on SP (DP) technology
- Far Detector TDRs for first two modules to be delivered in 2019

2021

Far Detector Installation Begins

2024

Physics Data Begins

Far detector consortia

Single-phase

- Anode Plane Assemblies
- Photon Detector S = = = =
- TPC Cold Electronics 👰
- Dual-phase
 - Charge Readout Plane
 - Photon Detector
 - Front-End Electronics
- Joint SP/DP
 - HV system 👰
 - DAQ 🚺 💽 💳 🕅 🚬
 - Slow Controls & Cryo Instrum.

Established in Aug 2017

 Charge: plan and execute the construction, installation, and commissioning of the FD subsystems

Far detector construction timeline

Neutrino beam and near detector

2026 Neutrino Beam and Near Detector Available

- Primary proton beam @ 60-120 GeV from Main Injector
- Initial 1.2 MW beam power, upgradable to 2.4 MW
- Near detector at 574 m distance from hadron production target

Neutrino beam status

- Target/horns configuration has been optimised to maximise sensitivity to CP violation
 - Includes engineering constraints
 - Larger v_{μ} / \bar{v}_{μ} flux for 0-4 GeV compared to CDR
- Next: LBNF Preliminary Design including cost estimate by 2019

A possible Near Detector concept

- Multi-purpose tracking detector could be a straw tube tracker, a high-pressure argon gas TPC, or something else
- Near Detector concept by 2018, Near Detector TDR in 2020

Conclusions

- DUNE at LBNF is a next-generation experiment for neutrino, nucleon decay and astroparticle physics
- Aims to be the "definitive" experiment based on conventional neutrino beams and the next mega-science project after the LHC
- LBNF/DUNE groundbreaking at SURF in July 2017!
- Physics data-taking starts in 2024, beam from FNAL available in 2026

Why DUNE?

Should we build [**DUNE**, T2K(K), ESSvSB, ...] despite impressive results from currently operating LBL program? **Yes!**

• **Ambiguities** may persist throughout end of T2K/NOvA:

Mass hierarchy

Parameter degeneracies at 300-800 km baselines

CP violation

• Current CPV hints (2σ) require reactor constraint

Non-maximal mixing

- Some tension between T2K and NOvA results
- Even if no ambiguities, would like to have >5σ determination for all 3v questions, and sensitive searches beyond 3v paradigm

Long-baseline neutrino oscillations

 v_µ→v_e and v
_µ→v
e oscillation probabilities depend, in different ways, on δ{CP} and sgn(Δ₃₁)

Oscillation sensitivity assumptions

- Oscillation priors from NuFit2016
- GLoBES-based fit to FD samples with parametrised FD response and ND constraints arXiv:1606.09550

Staging assumptions

- Staging scenario with equal running in neutrino and antineutrino modes:
 - Year 1 (2026): 20-kt FD, 1.07 MW beam
 - Year 2 (2027): 30-kt FD
 - Year 4 (2029): 40-kt FD
 - Year 7 (2032): 2.14 MW beam

Exposure (kt∙MW∙yr)	Exposure (yr)
171	5
300	7
556	10
984	15

Two-dimensional allowed regions

40

Sensitivity over time

MH Sensitivity

CP Violation Sensitivity

Interesting measurements will be made throughout the DUNE physics program!

Uncertainties on oscillation parameters

Uncertainties on oscillation parameters

• **Current**: $\delta(\Delta m_{31}^2) = 4 \times 10^{-5} \text{ eV}^2$, $\delta(\sin^2\theta_{23}) = 0.04$

Astroparticle physics in DUNE

Nucleon decay

• Limits and sensitivities compared with ranges predicted by Grand Unified Theories, for benchmark decay modes:

Sensitivity to n-nbar oscillations in DUNE

- $\Delta B=2$ process: neutron spontaneously oscillates into antineutron
- Subsequent annihilation with bound nucleon inside the nucleus
- Preliminary analysis based on convolutional neural network techniques shows promising sensitivity!

MH sensitivity with atmospheric neutrinos

Supernova neutrino cross sections and rates

ProtoDUNE goals

Detector construction

• Establish production process and quality assurance of full scale detector components

Detector installation

• Test of interfaces between detector elements

Detector operation

• Validate detector design and long-term detector performance

Test beam data

• Assess detector physics response and systematic uncertainties

LAr-TPC with pixel readout (ArgonCube)

Multi-purpose tracker options

HP Gar TPC

Straw Tube Tracker

3D Scintillator

Other Hybrids (I)

Other Hybrids (II)

