Searching for Lepton-Flavour Violation with the Mu3e Experiment

Ann-Kathrin Perrevoort

Physics Institute, Heidelberg University

NuFACT Uppsala

September 25, 2017

UNIVERSITÄ HEIDELBERG ZUKUNFT SEIT 1386

Charged Lepton Flavour Violation in μ \rightarrow eee

$$\mathsf{BR}_{\mu \to \mathsf{eee}} \sim \left(\frac{\Delta m_{\nu}^2}{m_{W}^2}\right)^2 < 10^{-54}$$

Observation of $\mu \rightarrow$ eee is a clear sign for New Physics

Signal and Background

Signal $\mu^{\scriptscriptstyle +}$ \rightarrow $e^+e^-e^+$

- Common vertex
- Coincident
- $\sum E_{e} = m_{\mu}$
- $\sum \vec{p}_{e} = 0$

Background

Combinatorial background

- No common vertex
- Not coincident
- $\sum E_{e} \neq m_{\mu}$
- $\sum \vec{p}_{e} \neq 0$

Internal conversion $\mu^+ \rightarrow e^+ e^- e^+ \overline{\nu}_{\mu} \nu_e$

- Common vertex
- Coincident
- $\sum E_{e} < m_{\mu}$
- $\sum \vec{p}_{e} \neq 0$

A. Perrevoort (PI HD)

Mu3e Experiment

The Mu3e Experiment

SINDRUM Mu3e $\begin{array}{l} {\sf BR}_{\mu \, \rightarrow \, \text{eee}} < 1.0 \cdot 10^{-12} \mbox{ at } 90 \ensuremath{\,\%} \mbox{ CL} \left[1988 \right] \\ {\sf Sensitivity of one in } 10^{15} \left(10^{16} \right) \mbox{ μ decays} \end{array}$

High muon stopping rates

- Phase I: $10^8 \mu/s$
- Phase II: $> 10^9 \mu/s$

Background suppression

- Very good vertex and time resolution
- Excellent momentum resolution

Muon Beam

Paul-Scherrer Institute

2.2 mA proton beam with 590 MeV Secondary beamlines: sub-surface μ^+ with 28 MeV

 10^8 muons/s at existing beamline π E5 10^9 muons/s at future beamline HiMB (under investigation)

Experimental Area

Experimental Area

A. Perrevoort (PI HD)

Multiple Coulomb Scattering

- Decay electrons have low momentum < 53 MeV/c
- Momentum resolution is dominated by multiple scattering

$$\frac{\sigma_p}{p}\sim \frac{\theta_{\rm MS}}{\Omega}$$
 with $\theta_{\rm MS}\propto \frac{1}{p}\sqrt{\frac{x}{X_0}}$

- $\rightarrow\,$ reduce material thickness x
- $\rightarrow\,$ increase opening angle Ω

Multiple Coulomb Scattering

- Decay electrons have low momentum < 53 MeV/c
- Momentum resolution is dominated by multiple scattering

$$\frac{\sigma_p}{p}\sim \frac{\theta_{\rm MS}}{\Omega}$$
 with $\theta_{\rm MS}\propto \frac{1}{p}\sqrt{\frac{x}{X_0}}$

- \rightarrow reduce material thickness x
- → increase opening angle Ω at $\Omega \approx \pi \Rightarrow \frac{\sigma_p}{p} \sim \mathcal{O}(\theta_{MS}^2)$

Multiple Coulomb Scattering

- Decay electrons have low momentum < 53 MeV/c
- Momentum resolution is dominated by multiple scattering

$$\frac{\sigma_p}{p}\sim \frac{\theta_{\rm MS}}{\Omega}$$
 with $\theta_{\rm MS}\propto \frac{1}{p}\sqrt{\frac{x}{X_0}}$

- \rightarrow reduce material thickness x
- → increase opening angle Ω at $\Omega \approx \pi \Rightarrow \frac{\sigma_p}{p} \sim \mathcal{O}(\theta_{MS}^2)$

The Detector in Phase I

Tracking detector: Thin Si pixel sensors (HV-MAPS)

Stopping rate of $10^8 \mu/s$ B-field of 1 T

+ Timing detector: Scintillating fibres and tiles

Length: 110 cm Diameter: 18 cm

Pixel Tracker

Measure low momentum electron tracks with excellent precision

Minimize material to reduce multiple Coulomb scattering:

- Thin Si pixel sensors
- Flexible printed circuit boards
- Kapton support structure
- \rightarrow 1.16 ‰ radiation lengths
 - Cooling with gaseous helium

Pixel Sensors: HV-MAPS

High Voltage Monolithic Active Pixel Sensors

- AMS 180 nm HV-CMOS process
- N-well in p-substrate
- Reverse bias of $\sim 80\,V$
 - Fast charge collection via drift
 - Depletion zone of ~ $(10 20) \, \mu m$ Thinning possible ($\lesssim 50 \, \mu m$)
- Integrated readout electronics
 - Signal amplification and shaping in N-well
 - Digitisation and zero-suppression in periphery
- Pixel size 80 × 80µm² Sensor size 2 × 2cm²

I.Perić, NIMA582 (2007)

MuPix7: HV-MAPS prototype for Mu3e

- 32×40 pixels à $103 \times 80 \mu m^2$
- $2.9 \times 3.2 \text{mm}^2$ of active area
- 50 µm thin
- 'System-on-chip'
- Zero-suppressed hit addresses and timestamps

MuPix7: HV-MAPS prototype for Mu3e

- 32×40 pixels à $103 \times 80 \mu m^2$
- $2.9 \times 3.2 \text{mm}^2$ of active area
- 50 µm thin
- 'System-on-chip'
- Zero-suppressed hit addresses and timestamps

$$\label{eq:efficiency} \begin{split} & \mbox{Efficiency} > 99\,\% \\ & \mbox{Timing resolution} < 20\,\mbox{ns} \end{split}$$

Latest prototype: MuPix8

- \rightarrow Arrived in August
- First large MuPix sensor: $2\times 1 \text{cm}^2$
- + 128 \times 200 pixels à 81 \times 80 μm^2
- Analogue pulse information
- Different substrates: $20\,\Omega\,cm$ and $80\,\Omega\,cm$

Latest prototype: MuPix8

- \rightarrow Arrived in August
- First large MuPix sensor: $2 \times 1 \text{cm}^2$
- 128×200 pixels à $81 \times 80 \mu m^2$
- Analogue pulse information
- Different substrates: 20 Ω cm and 80 Ω cm

Latest prototype: MuPix8

 \rightarrow Arrived in August

- First large MuPix sensor: $2 \times 1 \text{cm}^2$
- 128×200 pixels à $81 \times 80 \mu m^2$
- Analogue pulse information
- Different substrates: $20\,\Omega\,\text{cm}$ and $80\,\Omega\,\text{cm}$

MuPix9 submitted in August

- Small-scale prototype
- Slow control, serial powering

Cooling

Cooling with gaseous helium

Power consumption of Si pixel sensors is 250 mW/cm^2

Cooling

Cooling with gaseous helium

Power consumption of Si pixel sensors is 250 mW/cm^2

Timing Detector

Suppression of combinatorial background by a factor of 100

Scintillating Fibres

- 3 layers of fibres with $\varnothing\sim 250\,\mu m$ and length of 28 to 30 cm
- Round and square fibres under investigation
- Photon detection at both ends with LHCb SiPM column array
- Readout with custom-designed MuTRiG
- Prototype with 3 layers of square multiclad fibres:

 $\sigma_{\rm t}$ = (572 \pm 6)ps and ϵ \gtrsim 95 %

Scintillating Tiles

- + $6.5 \times 6.5 \times 5.0$ mm³ tiles with individual SiPMs
- Custom-designed MuTRiG: TDC ASIC for SiPM readout
- Prototype yields time resolution \sim 70 ps and efficiency $\epsilon \gtrsim$ 99.7 %

Simulation Results for Phase I

Simulation Results for Phase I

Summary

Mu3e Search for LFV decay $\mu \rightarrow eee$ with a sensitivity of BR <10⁻¹⁶ Low-material tracking detector

- High muon rates
- Thin Si pixel sensors
- Scintillating fibres and tiles

Phase I Prospected single-event sensitivity of $2 \cdot 10^{-15}$ in 300 days of data taking

Phase II Ultimate sensitivity with detector upgrade and high intensity muon beamline

Status

Finalizing detector design for phase I Preparing for construction and commissioning

Pixel MuPix8 is first large scale prototype In the lab and running MuPix10 could be used for module building (2nd half of 2018)

- Timing Very successful prototypes for tiles and fibres MuTRiG is being characterized
- Mechanics Challenging due to tight spacial constraints Integration well advanced

Magnet Expected 1st half of 2019

Technical design report to be published soon

The Phase II Detector

Increase muon stopping rate to $2 \cdot 10^9 \,\mu/s$ Additional recurl stations increase acceptance for recurler Smaller beam profile \Rightarrow smaller target radius

History of cLFV Searches in μ and τ Decays

Charged Lepton Flavour Violation

 $O_{ee}^{SLL}=(\overline{e}P_L\mu)(\overline{e}P_Le)$

Crivellin, Davidson, Pruna, Signer [arXiv:1611.03409]

Tracking in MS-dominated Environment

Signal Decay μ \rightarrow eee

Signature for μ decay at rest Common vertex Coincident in time $\sum E_e = m_\mu c^2$ $\sum \vec{p}_e = 0$

 $E_{\rm e} = (0 - 53) \,{\rm MeV}$

Multiple Coulomb scattering limits momentum resolution $\sigma_p \propto \sqrt{x}$

Background: Combinatorial Background

Overlays of Michel decay $\mu \to e \nu \nu,$ Bhabha scattering, photon conversion, \ldots

No common vertex Not coincident $\sum E_{e} \neq m_{\mu}c^{2}$ $\sum \vec{p}_{e} \neq 0$

Increases with beam intensity

Background: $\mu \rightarrow eee\nu\nu$

$$\mathsf{BR}_{\mu^+ \to e^+ e^- e^+ \overline{\nu}_{\mu} \nu_e} = (3.4 \pm 0.4) \cdot 10^{-5} \, \text{[Nucl.Phys.B260, 1985]}$$

Common vertex Coincident in time $\sum E_{e} < m_{\mu}c^{2}$ $\sum \vec{p}_{e} \neq 0$

 \rightarrow Missing energy due to neutrinos

Need very good momentum resolution

Background: $\mu \rightarrow eee\nu\nu$

NLO calculations for $\mu \rightarrow eee\nu\nu$: Pruna, Signer, Ulrich [arXiv:1611.03617]

A. Perrevoort (PI HD)

Background: $\mu \rightarrow eee\nu\nu$

NLO calculations for $\mu \rightarrow eee\nu\nu$: Fael, Greub arXiv:[1611.03726]

A. Perrevoort (PI HD)

Mu3e Experiment

Magnet and Detector Cage

Target

Extended hollow double-cone target made of $75 \,\mu\text{m}$ to $85 \,\mu\text{m}$ mylar foil 10 cm long with a radius of 19 mm

High stopping muon stopping rate Vertex separation over a large surface Low distortion for 'escaping' electrons

Lightweight Mechanics

- 50 µm silicon sensor
- 80 µm Flexible printed circuit board (FPC)
- 25 µm Kapton support structure
- $\rightarrow~\sim 0.1\,\%$ of radiation length

Pixel Sensors: HV-MAPS

Hit finding, digitisation, zero-suppression and readout on-chip Continuous and fast readout at $1.25\,\rm Gbit/s$

Data Acquisition

A. Perrevoort (PI HD)

Data Acquisition

Triggerless data acquisition

Front-end board

- Slow control
- Buffer and merge data
- Time-sorting

Readout board

- Switch between front-end and filterfarm
- Merge data of sub-detectors

GPU filterfarm

- Fast track finding and online reconstruction
- Reduce data rate by a factor of ~ 80

MuPix Telescope

- Tests of new prototypes and system integration
- 4 or 8 planes of MuPix7
- Scintillating tiles
- Readout via Altera Stratix IV development boards
- Test beam at PSI, DESY, SPS, MAMI

MuPix7 Results

Testbeam at DESY: 4 GeV e⁺ beam; using DESY Duranta telescope

Mupix7, 735 mV threshold, HV = -85 V

MuPix7 Results

Testbeam at DESY: 4 GeV e⁺ beam; DUT rotated by 60° wrt to beam axis

Timing Information

Tracks expected within readout frame of 50 ns

Matching with time information of scintillating fibres and tiles

A. Perrevoort (PI HD)

Mu3e Experiment

Reconstruction

- 3D multiple scattering fit for track reconstruction
- Spatial uncertainties of hit positions are ignored as MS dominates
- Hits in 3 layers form a 'triplet'
- Join triplets by minimizing MS angles
- Subsequent vertex fit with 3 trajectories of correct charge

A. Perrevoort (PI HD)

Mu3e Experiment

Short Tracks: 4 Hits

Short Tracks

Long Tracks: 6 Hits

Long Tracks: 8 Hits

Long Tracks

A. Perrevoort (PI HD)

Vertex Resolution and Mass Resolution of Signal Events

$\mu \rightarrow$ eee: Phase Space

$\mu \rightarrow$ eee: Effective Operator $em_{\mu}A_{L}\overline{\mu_{L}}\sigma^{\mu\nu}e_{R}F_{\mu\nu}$

$\mu \rightarrow \text{eee:}$ Effective Operator $(\overline{\mu_L}e_R)(\overline{e_L}e_R)$

μ \rightarrow eee: Effective Operators

Efficiency for reconstructing a μ \rightarrow eee decay

Searching for μ \rightarrow eX with Mu3e

- Emission of unobserved neutral, light boson in $\mu^+ \rightarrow e^+ X^0$
- Familon: Goldstone boson of SSB of flavour symmetry [Wilczek, 1982]
- Search for a peak on the e⁺ momentum spectrum

Searching for $\mu \rightarrow eX$ with Mu3e

Sensitivity to $\mu \rightarrow e X$ for $1 \cdot 10^{15}$ muon stops using a toy MC study

TWIST results by courtesy of R. Bayes [arXiv:1409.0638]

Mu3e Collaboration

Founding members:

University of Geneva

Heidelberg University

Karlsruhe Institute of Technology

JGU Mainz

Paul Scherrer Institute

ETH Zürich

University of Zürich

In the process of joining: University of Bristol University of Liverpool University College London University of Oxford

