DeeMe Experiment

Search for Muon to Electron Conversion at J-PARC MLF

Natsuki TESHIMA Osaka City University For the DeeMe Collaboration

from HiggsTan (http://higgstan.com/)

The 19th International Workshop on Neutrinos from Accelerators (NUFACT2017)

Uppsala University, Sweden

DeeMe Collaboration

M. Aoki ⁽¹⁾, D. Bryman ⁽²⁾, M. Ikegami ⁽³⁾, Y. Irie ⁽³⁾,
N. Kawamura ⁽³⁾, M. Kinsho ⁽⁴⁾, H. Kobayashi ⁽³⁾, S. Makimura ⁽³⁾,
H. Matsumoto ⁽³⁾, S. Meigo ⁽⁴⁾, T. Mibe ⁽³⁾, S. Mihara ⁽³⁾, Y. Miyake ⁽³⁾,
F. Morimoto ⁽⁵⁾, D. Nagao ⁽¹⁾, Y. Nakatsugawa ⁽⁶⁾, H. Natori ⁽⁷⁾,
H. Nishiguchi ⁽³⁾, T. Numao ⁽⁸⁾, C. Ohomori ⁽³⁾, S. Ritt ⁽⁹⁾, P. K. Saha ⁽⁴⁾,
N. Saito ⁽³⁾, Y. Seiya ⁽⁵⁾, K. Shimomura ⁽³⁾, P. Strasser ⁽³⁾, N. Teshima ⁽⁵⁾,
N. D. Thong ⁽¹⁾, N. M. Truong ⁽¹⁾, K. Yamamoto ⁽³⁾, K. Yamamoto ⁽⁵⁾,
M. Yoshii ⁽³⁾, K. Yoshimura ⁽¹⁰⁾, H. Yoshinaka ⁽⁵⁾

JAEA

岡田大学

- (1) Osaka University
- (2) UBC
- (3) KEK
- (4) JAEA
- (5) Osaka City University
- (6) IHEP
- (7) IBS
- (8) TRIUMF
- (9) PSI
- (10) Okayama University

Sep. 26th, 2017

NUFACT2017 at Uppsala University, Sweden

bS

DeeMe Experiment

• Search for charged lepton flavor violating decay $\mu^- N \rightarrow e^- N$

This talk

- Charged lepton flavor violation
- Experimental concept
- Current status
- Summary

Charged Lepton Flavor Violation and New Physics

- Charged Lepton Flavor Violation (cLFV)
 - $\mu N \rightarrow eN, \mu \rightarrow e\gamma, \mu \rightarrow eee, ...$
- Branching ratio for $\mu \rightarrow e\gamma$ suppressed in the Standard Model < 10^{-54} Nuclear Physics B (Proc. Suppl.) 188 (2009) 303-308
- Too low probability to observe
- Some theoretical models beyond the SM predict branching ratios 10⁻¹³ to 10⁻¹⁷
 - SUSY-GUT, SUSY-seesaw, extended Higgs sector, etc.
- An observation of cLFV processes at large rates means that there is new physics

Sep. 26th, 2017

3

What May Happen to Muonic Atoms

Standard Model

- Muon decay in orbit (DIO) $\mu^- \rightarrow e^- v_{\mu} \overline{v_e}$ 92% for C, 33% for Si
- Muon capture (MC) μ^- + (A,Z) $\rightarrow \nu_{\mu}$ + (A,Z-1) 8% for C, 66% for Si

New physics

Search for cLFV in Photonic and Non-photonic Decays

- Possible processes for cLFV can be classified
 - Non-photonic Photonic $\mathcal{L} = \frac{1}{1+\kappa} \frac{m_{\mu}}{\Lambda^2} \overline{\mu_{\rm R}} \sigma^{\mu\nu} e_{\rm L} F_{\mu\nu} + \frac{\kappa}{1+\kappa} \frac{1}{\Lambda^2} (\overline{\mu_{\rm L}} \gamma^{\mu} e_{\rm L}) (\overline{q_{\rm L}} \gamma_{\mu} q_{\rm L})$

Branching ratio for $\mu N \rightarrow e N$ $\approx 1/100$ of that for $\mu \rightarrow e\gamma$

We must study cLFV using different approaches

 10^{-2} 10^{-1} 10^{3} 1 10 Photonic-like Original graph by A. de Gouvêa, P. Vogel Prog. Part. Nucl. Phys. 71, 75-92 (2013)

Sep. 26th, 2017

DeeMe Sensitivity Goal

Current limit for $\mu N \rightarrow e N$

TRIUMF

4.6×10⁻¹² for a Ti target

SINDRUM-II at PSI

- 4.3×10⁻¹² for a Ti target
- 7×10^{-13} for a Au target

DeeMe

Aim to achieve

- S. E. S. < 1×10^{-13} for a C target
- S. E. S. < 2×10^{-14} for a SiC target

or to improve the current limit by one or two orders of magnitude

J-PARC MLF MUSE

- J-PARC MLF MUSE (muon facility) in Tokai Village, Japan
- Take 1.5 hours by express train from Tokyo

High purity pulsed proton beam from RCS

- 3 GeV
- 500 kW \rightarrow 1 MW (design power)
- Fast extraction
- 25 Hz double pulses

Sep. 26th, 2017

Experimental Concept

Experimental Concept

Experimental Concept

Magnetic spectrometer

Backgrounds

- Low-momentum background suppressed by the beamline
- High-momentum tail \rightarrow need $\Delta p < 1$ MeV/*c* spectrometer
- Beam pion/muon capture $\pi^{-}/\mu^{-} + (A,Z) \rightarrow (A,Z-1)^{*} \rightarrow \gamma + (A,Z-1),$ $\gamma \rightarrow e^{+}e^{-}$ at the beam-prompt timing
- Muon Decay in Orbit (DIO) 0.09
- Delayed protons at the irregular timing induce backgrounds
 < 0.027 (< 0.05 90%CL)
- Cosmic rays suppressed 2 μs/40 ms
 e: < 0.018, μ: < 0.001
- No antiprotons

Current Status - H1 Area at H Line

Sep. 26th, 2017

Current Status - Spectrometer Magnet PACMAN

- Dipole magnet PACMAN
- Used in PIENU experiment in TRIUMF until 2012
- Lease agreement from 2014 to 2017
- Updated until 2020
- Nominal field strength:
 0.4 T in the central part for electrons with 105 MeV/c bending 70 degrees
- Operation tested up to 500 A

Current Status - Detector Requirements

- Expected charged particles which hit the detectors
 - Prompt burst: produced by pulsed proton beams from RCS hitting the target, pass through the H Line
 - Mono-energetic delayed signal electrons: μ -*e* conversion
- \approx 70 GHz/mm² (10⁶ to 10⁷ particles/readout) per prompt burst at most
- Need to detect a single electron soon after the prompt bursts

Current Status - Detector Structure

- Rapid gas-gain-switching MWPC by switching applied voltage
- Work well after it is hit by many particles equivalent to those in DeeMe at H Line
- Publication in 2017: Prog. Theor. Exp. Phys. 2017, 023C01

Anode-wire land Potential wires

sp 0. or 0.

0.75 mm A fast high-voltage switching multiwire proportional chamber

H. Natori^{1,*,†}, N. Teshima², M. Aoki³, H. Nishiguchi¹, T. D. Nguyen³, Y. Takezaki², Y. Furuya², S. Ito^{3,‡}, S. Mihara¹, D. Nagao³, Y. Nakatsugawa^{1,§}, T. M. Nguyen³, Y. Seiya², K. Shimizu², and K. Yamamoto²

¹High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan
 ²Osaka City University, Osaka 558-8585, Japan
 ³Osaka University, Osaka 560-0043, Japan
 [†]Present Address: Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
 [‡]Present Address: Okayama University, Okayama 700-8530, Japan
 [§]Present Address: Institute of High Energy Physics (IHEP), Beijing 100049, China
 ^{*}E-mail: natori@ibs.re.kr

Received October 21, 2016; Revised December 12, 2016; Accepted December 26, 2016; Published February 14,

Current Status - Measurement of Muon Decay in Orbit

Motivation

- To test magnetic spectrometer (4 MWPCs and DAQ) → worked well
- To confirm the medium-momentum region around 55 MeV/*c* of theoretical calculation by Czarnecki et al.
- At D Line up to 10⁶ muons/s
- Measured the medium-region momentum spectrum of electrons from $\mu^{-} \rightarrow e^{-} v_{\mu} \overline{v_{e}}$
- Target: C, Si and SiC
- 2 days in Mar. 2017
- 5 days in Jun. 2017

Current Status – Monte Carlo Simulation of DIO

 At D Line, we measured the momentum with spectrometer momenta of 45, 52.5 (the edge), 55 MeV/c

Sep. 26th, 2017

Current Status - Analysis of DIO Measurement

• Subtract a template from waveforms

• Sum up sample points in the time and strip direction

Test pulse¹, HV ramp down on potential wires², over shoot by PZC circuit³, detector oscillation⁴, HV ramp up on potential wires⁵

Sep. 26th, 2017

Current Status - Analysis of DIO Measurement

- Event display of one of the MWPCs
- Black rectangles show the hits
- We can see some hits both in X-axis and Y-axis channels

Current Status – Correction of Spectrometer

• For the momentum calibration using positive muons

- Set 45 MeV/c and 52.5 MeV/c (nominal) for the spectrometer
- The edge of 52.5 MeV seen

Summary

- Search for $\mu^- N \rightarrow e^- N$ with a sensitivity of 1×10^{-14}
- 10¹⁰ muonic atoms/s at H Line with RCS operating 1 MW
- 4 MWPCs have been manufactured
- Spectrometer magnet was tested in 2015
- We measured the DIO spectrum around 55 MeV/*c* at D Line in 2017
- Target: C, Si, and SiC
- Spectrometer system, including 4 MWPCs and DAQ, worked without any serious problems
- Analysis ongoing
- DeeMe experiment will start soon after completing the H Line construction

Backup

Sep. 26th, 2017

 Negative muon, C target with a spectrometer momentum of 45 MeV/c at D Line

Current Status - Detector Structure

MWPC

- Cathode strip readout
- X-axis readout 3 mm width strip
- Y-axis readout 5×3 mm width strip
- Active area: 250 mm×200 mm

Readout electronics

- Amplifiers with large current tolerance
- 10-bit FADCs
 - with a sampling rate of 100 $\ensuremath{\mathsf{MHz}}$

Firmware developed by *N. M. Truong*

Sep. 26th, 2017

Current Status

- Magnetic spectrometer
 - Spectrometer magnet
 - Detectors (4 MWPCs) ,
- Muon Decay in Orbit (DIO) spectrum measurement

Sep. 26th, 2017

Current Status - Spectrometer Magnet PACMAN

- Dipole magnet PACMAN
- Used in PIENU experiment in TRIUMF until 2012
- Lease agreement from 2014 to 2017
- Updated until 2020
- Nominal field strength:
 0.4 T in the central part for electrons with 105 MeV/c bending 70 degrees
- Operation tested up to 500 A

Current Status – Monte Carlo Simulation of DIO

 At D Line, we measured the momentum with spectrometer momenta of 45, 52.5 (the edge), 55 MeV/c

DeeMe

Sep. 26th, 2017

Current Status - Analysis of DIO Measurement

- Event display of one of the MWPCs
- *t* [10 ns] Black rectangles show the hits
 - We can see some hits both in X-axis and Y-axis channels

Sep. 26th, 2017

Current Status – Correction of Spectrometer

• For the momentum calibration using positive muons

- Set 45 MeV/c and 52.5 MeV/c (nominal) for the spectrometer
- The edge of 52.5 MeV seen

