

#### UPPSALA UNIVERSITET



# Searches for Higgs bosons with hadronically decaying $\tau$ -leptons

Using Grid and Cloud computing techniques

Henrik Öhman (Uppsala University)

#### The ATLAS detector

- Hadronically decaying  $\tau$ -leptons
- $H \rightarrow \tau \tau$  measurement
- $H^+ \rightarrow \tau \nu$  search

#### The ATLAS detector



- ▶ Inner detector tracking
- Calorimeters trigger, particle ID, near full coverage
- Muon spectrometer tracking, trigger

- Level 1 (L1) trigger hardware, close to readout
- ► High-level trigger (HLT) computer farm, ~ 50 000 cores

#### Particle identification



- Electrons inner detector, electromagnetic calorimeter
- Photons inner detector, electromagnetic calorimeter
- Muons silicon detectors, muon spectrometer

- Hadronically decaying *τ*-leptons inner detector, calorimeters
- Hadrons (jets) inner detector, calorimeters
- Missing energy calorimeters, inner detector

#### $\tau\text{-lepton}$ decay and reconstruction



- ▶ Short decay time (0.3 ps)
- Leptonic decays: reconstructed as e or μ
- Hadronic decays (τ<sub>had</sub>): 1 or 3 charged hadrons (prongs), 0 or more neutral hadrons
- $\blacktriangleright$  Seeded by anti- $k_T$  jet with R=0.4
- Tau vertex identification
- 1 or more associated tracks



# $\tau_{\rm had}$ identification

- Very little rejection against background jets from reconstruction
- Boosted Decision Tree (BDT) algorithms trained separately for 1- and 3-prong decays
- Exploit variables related to
  - au-lepton decay time
  - Charged particle content (1 or 3 collimated tracks, isolation)
  - Neutral particle content (number of  $\pi^0$ )
  - Shower shape variables
- Loose/medium/tight working points
  - ▶ 1-prong: 60/55/45 %
  - ▶ 3-prong: 50/40/35 %
- $\blacktriangleright$  Separate electron veto for 1-prong  $\tau_{\rm had}$ 
  - Electron likelihood identification
  - ▶ Fixed 95 % efficiency



#### $au_{\mathsf{had}}$ energy scale

- The reconstructed energy at the local hadronic (LC) scale doesn't account for
  - $\blacktriangleright$  The narrow cone size of  $\tau_{\rm had}$
  - The particle content (typically  $\pi^0$ ,  $\pi^{\pm}$ )
  - Underlying event or pile-up
- Two corrections
  - ▶ Pile-up correction (linear in N<sub>vtx</sub>)
  - Detector response (1- or multi-prong,  $|\eta|)$
- ▶ Performance measured with a *tag-and-probe* analysis in  $Z \rightarrow \tau \tau$  events
  - Muon used as tag
  - $\tau_{had}$  (loose) used as probe
  - Kinematic cuts to further reduce background
  - Data-driven multijet and W+jets background



### The hadronic $\tau$ trigger

- The hadronic τ trigger is useful for many physics analyses
  - $\blacktriangleright$  The  $\tau\text{-lepton}$  is the heaviest of the leptons  $\rightarrow$  large coupling to Higgs bosons
  - Leptonic decays are cleaner, but hadronic decays have higher branching ratio (BR)
- Trigger with lowest p<sub>T</sub>-threshold is 25 GeV (prescaled)
- Triggers with the highest yield (only small prescale)
  - ▶ 2015: p<sub>T</sub> > 80 GeV
  - ▶ 2016: p<sub>T</sub> > 125 GeV
- Efficiency of trigger w.r.t. offline reconstructed  $\tau_{had}$  candidates measured with *tag-and-probe* analyses in  $Z \rightarrow \tau \tau$  and  $t\bar{t}$ events



## Trigger efficiency measurements

- $\blacktriangleright$  Efficiency is measured for true  $\tau_{\rm had}$  candidates
  - $\blacktriangleright$  Background  $\tau_{\rm had}$  candidates subtracted from the data
- Opposite-sign—same-sign (OS-SS) method used to model background
  - Sign-asymmetric analyses
  - Use shape of SS data
  - ▶ Normalize with OS to SS ratio (r<sub>QCD</sub>)
  - ▶ Jets misidentified as τ<sub>had</sub> (mostly) covered by SS data
  - $\blacktriangleright$  Leptons and rest of jets misidentified as  $\tau_{\rm had}$  covered by MC
- $\blacktriangleright$  Signal taken from all true  $\tau_{\rm had}$  in MC
- Ratio of data background and MC applied as a scale factor to MC events
  - ▶ TOT events in selection
  - PASS events that also fire trigger



$$\begin{split} \varepsilon_{\rm sig} &= \frac{N_{\rm true}^{\rm MC} \tau({\rm PASS})}{N_{\rm true}^{\rm MC} \tau({\rm TOT})} \\ \varepsilon_{\rm data} &= \frac{N^{\rm data}({\rm PASS}) - N^{\rm bkg}({\rm PASS})}{N^{\rm data}({\rm TOT}) - N^{\rm bkg}({\rm TOT})} \\ {\rm SF} &= \frac{\varepsilon_{\rm data}}{\varepsilon_{\rm sig}} \end{split}$$

# $t\overline{t}$ trigger efficiency measurement (1)

- $\blacktriangleright \ \tau_{\rm had} \ p_{\rm T}\mbox{-spectrum is kinematically limited}$  in  $Z \to \tau \tau$  events
- $t\bar{t}$  events offer a higher  $p_{\rm T}$ -range, and:
  - Require b-tag  $\rightarrow$  almost no W+jets or Z+jets background
  - ► Kinematic cuts and cut on Z mass window unavailable
  - $\blacktriangleright \ t\bar{t}$  events with jets misidentified as  $\tau_{\rm had}$  not entirely covered by SS data
- Event selection 2016
  - Muon trigger
  - $\blacktriangleright \ p_{\rm T}^{\mu} >$  26 GeV,  $|\eta| < 2.5$
  - ▶  $p_{\rm T}^{\tau} > 20 \,{\rm GeV}, \, 0 < |\eta| < 1.37$  or  $1.52 < |\eta| < 2.5, \, 1$  or 3 tracks
  - $\blacktriangleright~\geq 2$  jets,  $p_{\rm T}>$  20 GeV,  $|\eta|<4.5$
  - $\blacktriangleright \geq 1~b\text{-tag},~77~\%$  efficiency,  $|\eta| < 2.5$
- Purity  $\sim$  60 % ( $\sim$  70 % for  $p_{\rm T}^{\tau}$  > 60 GeV)



# $t\bar{t}$ trigger efficiency measurement (2)

- ▶ Efficiency and scale factors for  $\tau$  trigger with  $p_{\rm T} > 25 \, {\rm GeV}$
- Systematic uncertainties arise from background subtraction
- Effects of systematic uncertainty on the weighted-average efficiency:

| r <sub>QCD</sub> | 0.8%    |
|------------------|---------|
| Pile-up          | 0.1%    |
| <i>b</i> -jets   | < 0.1%  |
| Muons            | < 0.1 % |

- Scale factors almost equal to 1
- Clear decline in efficiency for 1-prong τ<sub>had</sub> candidates



# $t\bar{t}$ trigger efficiency measurement (3)



12 / 29

- Efficiency and scale factors "lowest unprescaled" τ trigger
- ▶ 2015: p<sub>T</sub> > 80 GeV
- ▶ 2016: p<sub>T</sub> > 125 GeV
- Scale factors almost equal to 1

### SM Higgs boson production and decay

- ▶ Discovery of a neutral scalar in 2012 with mass 125 GeV
  - CMS: Phys. Lett. B 716 (2012) 30
  - ATLAS: Phys. Lett. B 716 (2012) 1-29
- Primarily produced through three processes at the LHC
  - Gluon-gluon fusion (ggF)
  - Vector boson fusion (VBF)
  - Associated production (VH)





#### SM Higgs boson measurements

- ▶ Higgs mass measured in  $H \rightarrow \gamma \gamma$  and  $H \rightarrow ZZ \rightarrow 4l$  channels
  - ▶  $m_H = 125.09 \pm 0.21 (\text{stat.}) \pm 0.11 (\text{syst.}) \text{ GeV}$
  - CMS+ATLAS: Phys. Rev. Lett. 114, 191803
- Coupling to bosons also measured
- Missing: coupling to fermions
  - $H \rightarrow b \bar{b}$  difficult background conditions
  - ▶  $H \rightarrow \tau \tau$  lower BR, but semi-leptonic channels help



Phys. Rev. Lett. 114, 191803

Uppsala, 2016-11-18

14 / 29

# $H \rightarrow \tau \tau$ (1)

- Run 1  $H \rightarrow \tau \tau$  result JHEP 04 (2015) 117
  - ▶ 4.5 fb<sup>-1</sup> 7 TeV
  - 20.3 fb<sup>-1</sup> 8 TeV

•  $H \rightarrow \tau \tau$  measured in three channels  $(l = e \text{ or } \mu)$ 

- $\blacktriangleright \ H \to \tau_{\rm had} \tau_{\rm had}$
- $\blacktriangleright \ H \to \tau_{\rm I} \tau_{\rm had}$
- $H \rightarrow \tau_{\mathsf{I}} \tau_{\mathsf{I}}$
- …and in two categories
  - $\blacktriangleright \ {\rm VBF-VBF}/VH$  ,  $\geq 2$  jets, large  $\Delta\eta$
  - ▶ Boosted ggF,  $\geq 1$  jet, fail VBF
- Several triggers are used
  - Single e or  $\mu$  trigger:  $e\mu$ ,  $\mu\mu$ ,  $e\tau_{had}$ ,  $\mu\tau_{had}$
  - ► Two-*e* trigger: *ee*
  - Two- $\tau$  trigger:  $\tau_{had} \tau_{had}$
- ▶ Separate BDTs for each channel and category (total: 6)
  - Cross-trained with 8 TeV data (even/odd)
  - Applied to both 8 TeV and 7 TeV data

# $H \rightarrow \tau \tau$ (2)

- Semi-leptonic channel exploits the clean signature of the electron or muon
- ▶ Irreducible  $Z \rightarrow \tau \tau$  background
  - Embedding technique
  - $\blacktriangleright ~Z \rightarrow \mu \mu$  events from data, substitute with simulated  $\tau$  decays
- $\blacktriangleright$  Misidentified  $\tau_{\rm had}$  from jets and  $e/\mu$ 
  - ► Investigated ATLFAST-II (fast calorimeter simulation) for W+jets background
  - ▶ Fake factors derived separately for multi-jet, W+jets,  $Z \rightarrow ll$ +jets, and  $t\bar{t}$  backgrounds
- Pre-selection cuts
  - Single e or  $\mu$  trigger
  - $\blacktriangleright$  1 isolated e or  $\mu,$  no other light lepton
  - $\blacktriangleright~1~\tau_{\rm had},~1~{\rm or}~3$  tracks, opposite sign to  $e/\mu$
  - $m_{\rm T} <$  70 GeV (rejects W+jets)
  - $\blacktriangleright$  No b-tagged jet with  $p_{\rm T}>$  30 GeV (rejects  $t\bar{t})$



# $H \rightarrow \tau \tau$ (3)

- ▶ Reconstruction of \u03c6<sup>+</sup>\u03c6<sup>-</sup> mass not straight-forward due to presence of neutrinos
- ▶ 6 to 8 unknowns, but only 4 equations
- Missing mass calculator (MMC) technique scans
  - $E_x^{\text{miss}}$  and  $E_y^{\text{miss}}$ , within resolution
  - Angles between *τ*-leptons and neutrino systems
  - Masses of neutrino systems (leptonic decays)
- Maximizes a likelihood function where PDFs are found from simulated  $H \rightarrow \tau \tau$  and  $Z \rightarrow \tau \tau$  events
- ► Target: good resolution of and separation between *Z* and Higgs boson mass peaks





# $H \rightarrow \tau \tau$ (4)

- Simultaneous profile-likelihood fit of the BDT distributions in all 6 channels
- ▶ Using  $m_H = 125.36 \, \mathrm{GeV}$
- ▶ Signal strength:  $\mu = 1.43^{+0.27}_{-0.26}(\text{stat.})^{+0.32}_{-0.27}(\text{syst.}) \pm 0.09(\text{th.})$
- $\blacktriangleright$  Deviation from background-only hypothesis of  $4.5\sigma$
- $\blacktriangleright$  Events in MMC plot weighted by  $\ln(1+S/B)$  for visualization



# $H \rightarrow \tau \tau$ (5)

- $\blacktriangleright$  Separate data into VBF+VH and ggF production modes
- Simultaneously measure their signal strenghts
- $\blacktriangleright$  Result within  $1\sigma$  of the SM prediction



#### Higgs bosons beyond the SM

- Two-Higgs doublet models (2HDM)
  - ► Type I, Type II, lepton specific, flipped
  - Minimal Supersymmetric SM (MSSM) special case of Type II
- In MSSM benchmark scenarios the Higgs sector parameters are determined by m<sub>A</sub> and tanβ at tree level
  - Examples:  $m_h^{\text{max}}$ ,  $m_h^{\text{mod}+}$ ,  $m_h^{\text{mod}-}$
- ▶ hMSSM a scenario where the mass of the lightest Higgs boson is set to  $m_h = 125$  GeV, but where all other parameters are free
  - $m_A$  and  $\tan\beta$  decide the Higgs sector parameters to a good approximation (even at NLO and NNLO)
  - Can ignore radiative corrections when computing Higgs masses





### $H^+$ production and decay

- ▶ Charged Higgs bosons are produced
   ▶ In top-quark decays, if m<sub>H<sup>+</sup></sub> < m<sub>t</sub>
   ▶ In association with top quarks, if m<sub>H<sup>+</sup></sub> > m<sub>t</sub>
- …and decay primarily to
  - $\blacktriangleright \ H^+ \to \tau \nu \text{, if } m_{H^+} < m_t$
  - $\blacktriangleright \ H^+ \to tb \text{, if } m_{H^+} > m_t$
- $\blacktriangleright$  Depending on scenario, BR for  $H^+ \to \tau \nu$  can still be sizeable, and offers a cleaner signature than  $H^+ \to tb$









#### Run 1 $H^+$ searches

- Charged Higgs bosons searched for in multiple channels in Run 1
  - *H*<sup>+</sup> → *cs*, 7 TeV
     Eur. Phys. J. C, 73 6 (2013) 2465
  - $H^+ \rightarrow \tau \nu$ , 8 TeV JHEP03 (2015) 088
  - $H^+ \rightarrow tb$ , 8 TeV JHEP03 (2016) 127
  - *H*<sup>+</sup> → *W*<sup>+</sup>*Z*, 8 TeV
     Phys. Rev. Lett. 114, 231801 (2015)





# $H^+ \rightarrow \tau \nu$ (1)

- Search for  $H^+ \rightarrow \tau \nu$  with 14.7 fb<sup>-1</sup> 13 TeV data from 2015 and 2016 ATLAS-CONF-2016-088
- Cross section increases 4–10x ( $m_{H^+}$  and model dependent)
- $\tau_{had}$  +jets channel (hadronic W decay)
  - $E_{\rm T}^{\rm miss}$  trigger
  - $\blacktriangleright~1~\tau_{\rm had},~p_{\rm T}>25\,{\rm GeV},~1$  or 3 tracks,  $0<|\eta|<1.37$  or  $1.52<|\eta|<2.5$
  - ▶  $\geq 3$  jets,  $\geq 1$  *b*-tag
  - ▶  $E_{\rm T}^{\rm miss} > 150~{\rm GeV}$
  - No light leptons

Use transverse mass as discriminating variable

$$m_{\rm T} = \sqrt{2 p_{\rm T}^{\tau} E_{\rm T}^{\rm miss} (1 - \Delta \phi_{\tau,{\rm miss}})}$$

- ▶ Extra cut on  $m_{\rm T} > 50 \,{\rm GeV}$  to avoid events with mismeasured  $E_{\rm T}^{\rm miss}$
- $\blacktriangleright$  Dominant background is jets misidentified as  $\tau_{\rm had}$  from
  - $t\bar{t}$  events, in *low-m*<sub>T</sub> region
  - multi-jet events, in  $high-m_T$  region

# $H^+ \to \tau \nu$ (2)

- ▶ Trigger efficiency measured in data
  - $\blacktriangleright \ e + \tau_{\rm had} + {\rm jets} \ {\rm selection}$
  - Fitted to the error function

$$F(x) = p_0 \cdot \left[1 + \left(\frac{x-p_1}{p_2}\right)\right] + p_3$$

- Systematic uncertainties derived by varying
  - ▶ e identification
  - $\tau_{had}$  identification
  - Event selection
  - Statistical precision
- Fitted efficiency aplied to MC events
- Triggers used
  - ▶ 2015: Topo-cluster,  $E_{\rm T}^{\rm miss} > 70 \, {\rm GeV}$
  - ▶ 2016: Jet-based,  $E_{\rm T}^{\rm miss} > 90 \, {\rm GeV}$



# $H^+ \to \tau \nu$ (3)

- $\blacktriangleright$  Background from jets misidentified as  $\tau_{\rm had}$  treated by the fake factor method
- $\blacktriangleright$  Fake factors parametrized by  $p_{\rm T},$  separately for 1- and 3-prong  $\tau_{\rm had}$
- $\blacktriangleright\ m_{\rm T}$  plot after fit to background-only hypothesis
- Signal hypotheses added on top
  - $\blacktriangleright$  Cross section as predicted by the hMSSM scenario at  $\mbox{tan}\beta=60$
  - 200 GeV (5x), 500 GeV (5x), 1000 GeV (10x)



# $H^+ \to \tau \nu$ (4)

- ▶ Profile-likelihood fit of  $m_{\rm T}$  distribution in signal region
- Systematic uncertainties included as nuisance parameters
- No deviation from SM background
  - ▶ 95 % CL exclusion limits on  $\sigma(pp \rightarrow [b]tH^+) \times \mathcal{B}(H^+ \rightarrow \tau\nu)$ : 1.8 pb-14 fb for  $m_{H^+} = 200 \text{ GeV}$  to 2000 GeV
  - $\blacktriangleright$  Exclusion in  $m_{H^+}\text{-}{\rm tan}\beta$  plane as interpreted in hMSSM



#### Conclusion

- $\blacktriangleright$  Hadronically decaying  $\tau$  leptons are important to many analyses
  - Reconstruction, identification, and energy calibration
- Hadronic  $\tau$  trigger
  - $\blacktriangleright$  Efficiency measurement in  $Z \rightarrow \tau \tau$  events
  - New method to measure efficency in  $t\bar{t}$  events
- $\blacktriangleright$  SM Higgs boson measurement in  $H \to \tau \tau$ 
  - ▶ Full 7 TeV and 8 TeV datasets
  - Best fit signal strength  $\mu\approx 1.4$
  - $\blacktriangleright$  Corresponds to  $4.5\sigma$
- Charged Higgs boson searches
  - Many searches performed in Run 1
  - Search performed in  $H^+ 
    ightarrow au 
    u$  with 14.7 fb $^{-1}$  13 TeV data from 2015 and 2016
  - Limits on  $\sigma(pp \rightarrow [b]tH^+) \times \mathcal{B}(H^+ \rightarrow \tau\nu)$ : 1.8 pb-14 fb for  $m_{H^+} = 200$  GeV to 2000 GeV
  - Exclusion in  $m_{H^+}$ -tan $\beta$  plane as interpreted in hMSSM



#### Bonus





### Cloud computing R&D

- ▶ ATLAS analysis cluster on Google Compute Engine (GCE) laaS
- Using Puppet to configure the cluster
- ▶ Using cvmfs, Condor, XRootD, AutoPyFactory to run ATLAS jobs

