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Introduction
Particles oscillate around design orbit. Number 
of oscillations is the tune of accelerator.  

E.g. Qx = 7.23    integer and fraction part, 
latter is important for beam stability. 

Tune is a design parameter and depends on 
the optics of the accelerator, i.e. the spacing 
and strengths of the quadrupoles:  
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Chromaticity = slope

Chromaticity: tune is energy-dependent. 
Since a beam has an energy distribution we 
have a tune distribution - or a ”tune spread”.  
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Stability and tune-shifts

Qx
0 0.2 0.4 0.6 0.8 1

Q
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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All resonance lines up to 4th order

General resonance condition: 

where m, n and k are integers. 

The tune cannot be an integer since 
oscillations would amplify each turn. 

Higher order resonances require that no 
perturbations affect the coherence over 
a number of turns. Number of turns 
gives the order of the resonance. 

mQx + nQy = k
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General resonance condition: 

where m, n and k are integers. 

The tune cannot be an integer since 
oscillations would amplify each turn. 

Higher order resonances require that no 
perturbations affect the coherence over 
a number of turns. Number of turns 
gives the order of the resonance. 
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Amplitude-dependent tune-shifts
We can compensate chromaticity by inserting sextupoles in dispersive sections.  
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Amplitude-dependent tune-shifts
We can compensate chromaticity by inserting sextupoles in dispersive sections.  

Sextupole
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Amplitude-dependent tune-shifts
We can compensate chromaticity by inserting sextupoles in dispersive sections.  

Sextupole

No chromaticity is nice but sextupoles are nonlinear elements and they in 
turn introduce another type of tune-shift: amplitude dependent. 

Jx =
x2 + x′2

2

Tune-shift is proportional to the action:

Particles oscillating with larger amplitudes are 
more susceptible to tune-shifts and may be lost 
due to resonances => limits dynamic aperture
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Transfer maps
Transfer map: describes how the particle moves 
or rather how to map the incoming coordinates to 
outgoing coordinates.  

Maps can describe: a single element, a cell, the 
whole accelerator (full turn map). 

A linear map can be represented by matrix, e.g. 
a quadrupole or drift space: (

x
x′

)(
x̄
x̄′

) (
x̄
x̄′

)
=

(
1 0
− 1

f 1

)(
x
x′

)

MQ =

(
1 0
− 1

f 1

)

MD =

(
1 L
0 1

)

M = MDMQ

(
x2

x′
2

)
=

(
1 L
0 1

)(
x̄
x̄′

)

(
x2

x′
2

)

L

Drift space: Transfer map for quadrupole 
followed by drift space: 
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Normalized phase space

A particle under a linear transfer map trace 
out ellipses in phase-space. If we transfer into 
normalized phase space we get circles 
instead described by the rotation matrix R. 
The angle µ is called the phase advance. 

We can write:

Parametrization of transfer matrix:

M =

( √
β 0

− α√
β

1√
β

)(
cosµ sinµ
− sinµ cosµ

)(
1√
β

0
α√
β

√
β

) (
x
x

)

n+1

= M

(
x
x′

)

n

Poincaré section:

M = A−1RA

(
x̃
x̃′

)
=

(
1√
β

0
α√
β

√
β

)(
x
x′

)

The action J is an invariant of the motion:

J =
x̃+ x̃′

2
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Hamiltonians

Hoct =
k3
4!
(x4 − 6x2y2 + y4)

Hsext =
k2
3!
(x3 − 3xy2)

Ex: Hamiltonians for sextupole 
and octupole (thin elements):

A Hamiltonian H together with Hamiltons equations 
describes a particle trajectory.    

Third order

Fourth order

Or expressed using the Poisson 
bracket:

dx

ds
=

∂H

∂x′ ;
dx′

ds
= −∂H

∂x

dx

ds
= [−H,x] ;

dx′

ds
= [−H,x′]

[f, g] =
∂f

∂x

∂g

∂x′ −
∂f

∂x′
∂g

∂x

Then Hamilton’s equations can be 
written as:
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Nonlinear maps
The Lie operator 

We can can calculate the change of a particle passing through an 
element with Hamiltonian H by a Lie transformation of the coordinate 
function: 

: f : g = [f, g] =
∂f

∂x

∂g

∂x′ −
∂f

∂x′
∂g

∂x

The Lie operator f on g is the 
Poisson bracket. 

x̄ = e−:H:x = x− [H,x] +
1

2!
[H, [H,x]] + . . .

Which essentially is a Taylor map. The Lie transformation maps 
incoming coordinates to outgoing coordinates for a nonlinear element 
described by Hamiltonian H. 
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Lie Algebra

Similarity transformation:

Campbell-Baker-Hausdorff formula

We can move the Hamiltonian to another location 
via the similarity transformation. 

We can transform the operator by transforming the 
generator.

M = Re:−H(x⃗1):

= Re:−H(x⃗1):R−1R

= e:−H(Rx⃗1):R

= e:−H(x⃗2):R

e:HA:e:HB : = e:H:

H = HA +HB+
1

2
[HA, HB ] +

1

12

[
HA −HB , [HA, HB ]

]
+ . . .

where

CBH tells us how to 
concatenate Hamiltonians
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Moving all elements to reference point
By iterative usage of the similarity transform and CBH we can 
represent the whole beam line as a linear map + a nonlinear kick. 

We have written a code that can represent polynomials of (x, x’, y, y’), 
and concatenate the Hamiltonians consistently up to 5th order. But to 
see what resonances and tune-shifts we get we need to transform 
our effective Hamiltonian into a normal form, which will be explained 
next.  

Super-kick
First move H4 and 
concatenate with H5, 
then move H3 etc.
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Normal forms
We can propagate a Hamiltonian by propagating its coefficients

H(1) = h(1)
i xi = h(1)

i R−1
ij yj = h̃(1)yj

h̃(1) =
(
R−1

)T
h(1) = S(1)h(1) y⃗ = Rx⃗

Linear transform:

To write a map M on its normal form we need to find K and C such 
that:

M = e:−H:R = e:−K:e:−C:Re:K:
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i xi = h(1)

i R−1
ij yj = h̃(1)yj

h̃(1) =
(
R−1

)T
h(1) = S(1)h(1) y⃗ = Rx⃗

Linear transform:

To write a map M on its normal form we need to find K and C such 
that:

M = e:−H:R = e:−K:e:−C:Re:K:

We can re-write as

e:−H:Re:−K:R−1 = e:−K:e:−C:

e:−H:e:−SK: = e:−K:e:−C:

A similarity transform! We get:
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Normal forms
We can propagate a Hamiltonian by propagating its coefficients

H(1) = h(1)
i xi = h(1)

i R−1
ij yj = h̃(1)yj

h̃(1) =
(
R−1

)T
h(1) = S(1)h(1) y⃗ = Rx⃗

Linear transform:

To write a map M on its normal form we need to find K and C such 
that:

M = e:−H:R = e:−K:e:−C:Re:K:

We can re-write as

e:−H:Re:−K:R−1 = e:−K:e:−C:

e:−H:e:−SK: = e:−K:e:−C:

A similarity transform! We get:

This we can write order-by-order:

H = H(3) +H(4) +H(5)

K = K(3) +K(4) +K(5)

C = C(3) + C(4) + C(5)

SK = S(3)K(3) + S(4)K(4) + S(5)K(5)
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Normal forms cont’d
e:−H:e:−SK: = e:−K:e:−C:We solve order-by-order

e:−H(3):e:−S(3)K(3): = e:−K(3):e:−C(3):

H(3) + S(3)K(3) = K(3) + C(3) + higher orders

From CBH we get:

Since C(3) = 0 (no tune-shift term of third order) we can write

K(3) = (1− S(3))−1H(3)

H = HA +HB+
1

2
[HA, HB ] +

1

12

[
HA −HB , [HA, HB ]

]
+ . . .
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Normal forms cont’d
e:−H:e:−SK: = e:−K:e:−C:We solve order-by-order

e:−H(3):e:−S(3)K(3): = e:−K(3):e:−C(3):

H(3) + S(3)K(3) = K(3) + C(3) + higher orders

From CBH we get:

Since C(3) = 0 (no tune-shift term of third order) we can write

K(3) = (1− S(3))−1H(3)

H = HA +HB+
1

2
[HA, HB ] +

1

12

[
HA −HB , [HA, HB ]

]
+ . . .

We solve for C(4) and K(4):

Keeping all order up to fourth order:

H(4) + S(4)K(4) +
1

2

[
H(3), S(3)K(3)

]
= K(4) + C(4) + higher orders

(1− S(4))K(4) + C(4) = H(4) +
1

2

[
H(3), S(3)K(3)

]

In fourth order we have nonzero tune-shift polynomial
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Compensating the tune-shift

We invert (1 - S(4)) by SVD and construct a projector from the eigenvectors 
corresponding to the zero eigenvalues, i.e. a null space projector:

(1− S(4))K(4) + C(4) = H(4) +
1

2

[
H(3), S(3)K(3)

]

We cannot invert (1 - S(4)) because it has 3 zero eigenvalues. But S(4) is 
constructed from a pure rotation matrix R and these zero eigenvalues 
corresponds to eigenvector monomials:  which are proportional to:
(x2 + x′2)2 (y2 + y′2)2 (x2 + x′2)(y2 + y′2) J2

x , J2
y , JxJy

Then we get C(4) by projecting RHS onto  
null space:

Pr =
∑

eig=0

|V >< U |
< V |U >

C(4) = Pr

{
H(4) +

1

2

[
H(3), S(3)K(3)

]}

UΛV T = (1− S(4))−1
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UΛV T = (1− S(4))−1
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Compensating the tune-shift

We invert (1 - S(4)) by SVD and construct a projector from the eigenvectors 
corresponding to the zero eigenvalues, i.e. a null space projector:

(1− S(4))K(4) + C(4) = H(4) +
1

2

[
H(3), S(3)K(3)

]

We cannot invert (1 - S(4)) because it has 3 zero eigenvalues. But S(4) is 
constructed from a pure rotation matrix R and these zero eigenvalues 
corresponds to eigenvector monomials:  which are proportional to:
(x2 + x′2)2 (y2 + y′2)2 (x2 + x′2)(y2 + y′2) J2

x , J2
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Then we get C(4) by projecting RHS onto  
null space:

Pr =
∑

eig=0

|V >< U |
< V |U >

C(4) = Pr

{
H(4) +

1

2

[
H(3), S(3)K(3)

]}

Adding octupoles only contribute linearly to fourth order:

C(4) = Pr

{
H̃(4) +H(4) +

1

2

[
H(3), S(3)K(3)

]} To compensate tune-shift: set 
octuple strengths such RHS = 0. 
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Optimum placement of octuples
We start with four octuples (horizontal motion only) and write the 
Hamiltonians in action-angle variables:

H̃ = k(x cosφ+ x′ sinφ)4 + k(x cosφ− x′ sinφ)4

= k
[
x4 cos4 φ+ 4x3x′ cos3 φ sinφ+ 6x2x′2 cos2 φ sin2 φ

+4xx′3 cosφ sin3 φ+ x′4 sin4 φ
]

+ k
[
x4 cos4 φ− 4x3x′ cos3 φ sinφ+ 6x2x′2 cos2 φ sin2 φ

−4xx′3 cosφ sin3 φ+ x′4 sin4 φ
]

= 2k
{
x4 cos4 φ+ 6x2x′2 cos2 φ sinφ+ x′4 sin4 φ

}

Move via similarity transform
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Optimum placement of octuples
We start with four octuples (horizontal motion only) and write the 
Hamiltonians in action-angle variables:

H̃ = k(x cosφ+ x′ sinφ)4 + k(x cosφ− x′ sinφ)4

= k
[
x4 cos4 φ+ 4x3x′ cos3 φ sinφ+ 6x2x′2 cos2 φ sin2 φ

+4xx′3 cosφ sin3 φ+ x′4 sin4 φ
]

+ k
[
x4 cos4 φ− 4x3x′ cos3 φ sinφ+ 6x2x′2 cos2 φ sin2 φ

−4xx′3 cosφ sin3 φ+ x′4 sin4 φ
]

= 2k
{
x4 cos4 φ+ 6x2x′2 cos2 φ sinφ+ x′4 sin4 φ

}

Move via similarity transform

Short-hand notation:

Move all four octupoles to reference point:

c1 = cosφ1 s1 = sinφ1 etc.

Terms with x3x’ and xx’3 etc. cancel because symmetry => do not drive 
resonances. 

H̄ = 2k1
[
x4c41 + 6x2x′2c21s

2
1 + x′4s41

]
+ 2k2

[
x4c42 + 6x2x′2c22s

2
2 + x′4s42

]

= 2x4(k1c
4
1 + k2c

4
2) + 12x2x′2(k1c

2
1s

2
1 + k2c

2
2s

2
2) + 2x′4(k1s

4
1 + k2s

4
2)
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Optimum placement of octuples cont’d
In order to compensate the amplitude-dependent tune-shift we need 
terms containing: 

This gives us a relation between 
k1/k2 and the phase advances:

(x2 + x′2)2 (y2 + y′2)2 (x2 + x′2)(y2 + y′2)

Octupole excitation ratio k1/k2
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Optimum placement of octuples cont’d
In order to compensate the amplitude-dependent tune-shift we need 
terms containing: 

This gives us a relation between 
k1/k2 and the phase advances:

(x2 + x′2)2 (y2 + y′2)2 (x2 + x′2)(y2 + y′2)

There is a solution with three equally 
powered octupoles and 60 degrees 
phase advance:
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Optimum placement of octuples cont’d

Carrying out the same procedure as before (action-angle variables etc.) 
for the triplet we get:

H̃ =
9

2

[
kxJ

2
x + kyJ

2
y − 4kxyJxJy − 2kxyJxJy cos(2ψx − 2ψy)

]

This drives the 2Qx - 2Qy resonance. In 2D we see that this setup cancel 
all resonances except oneWe can solve this by adding another triplet, i.e. 
a ”six-pack”: 

This setup can cancel a given tune-shift term without driving any fourth 
order resonances! In order to cancel all three tune-shift terms we need 
three six-packs.

H = k
(
β2
xx̃

4 − 6βxβyx̃
2ỹ2 + β2

y ỹ
4
)
= kxx̃

4 − 6kxyx̃
2ỹ2 + ky ỹ

4

The 4D Hamiltonian for an octupole in real phase space:
x =

√
βxx̃

y =
√

βy ỹ
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Simulation: Octupoles + phase advance
A simple setup with three 
setups of octupoles + a 
phase advance:

3 octupoles

3 triplets

3 six-packs 

Smear plots to see resonances

σJ =

√
⟨J2⟩ − ⟨J⟩2

⟨J⟩2
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Resonances
Plot smear on top of tune diagram to identify resonances
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Resonances
Plot smear on top of tune diagram to identify resonances
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Resonances
Plot smear on top of tune diagram to identify resonances
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Simulation - extended model
Two straight sections (NPS):
- a”trombone” for setting the overall tune 

- a section containing the octupoles  

- Simulate the three different octupole 
configurations 

Trombone
Arc

Reference  
point

Each arc consists of 9 FODO cells.

The FODO cells include:  
- 2 dipole bends 
- 2 sextupoles for chromaticity  
correction

NPS

RPS
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Simulation - results
Tune-shift for the different octuple configurations:

Configuration with 3 octupoles reduces stability.  
Using triplets are more stable and six packs even more so.
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Simulation - smear plots

• Configuration with 
only three 
octupoles worsen 
stability and 
introduces some 
additional 
resonances.  

• Triplets or six-
packs do not add 
resonances. 

• For this case 
resonances are 
dominated by the 
sextuplets.
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Conclusions

• Powerful analytical method 
• Code to treat Hamiltonians and normal forms 
• Optimum placement of octupoles for tune-shift 

compensation 

Future work
• Include resonant normal forms 
• Apply method to other related issues 
• Apply method to an actual machine 
• …

Thank you for your attention!


