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Introduction

Particles oscillate around design orbit. Number
of oscillations is the tune of accelerator.

E.g. Qx =7.23 integer and fraction part,
latter is important for beam stability.

Tune is a design parameter and depends on
the optics of the accelerator, i.e. the spacing
and strengths of the quadrupoles:
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Introduction

Particles oscillate around design orbit. Number
of oscillations is the tune of accelerator.

E.g. Qx =7.23 integer and fraction part,
latter is important for beam stability.

Tune is a design parameter and depends on
the optics of the accelerator, i.e. the spacing
and strengths of the quadrupoles:

Tune from FFT of beam position

VA
............. XVAU
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Chromaticity: tune is energy-dependent. 0.428 |
Since a beam has an energy distribution we 0.426
have a tune distribution - or a "tune spread”. 0.424
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Stability and tune-shifts

The tune cannot be an integer since General resonance condition:
oscillations would amplify each turn. mQ, +nQ, =k

| | where m, n and k are integers.
Higher order resonances require that no

perturbations affect the coherence over
a number of turns. Number of turns
gives the order of the resonance.

All resonance lines up to 4th order

) Resonance diagram of order 4
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Stability and tune-shifts

The tune cannot be an integer since General resonance condition:
oscillations would amplity each turn. mQ, +nQ, =k

| | where m, nand k are integers.
Higher order resonances require that no

perturbations affect the coherence over
a number of turns. Number of turns
gives the order of the resonance.

All resonance lines up to 8th order

. Resonance diagram of order 8
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Amplitude-dependent tune-shifts

We can compensate chromaticity by inserting sextupoles in dispersive sections.
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Amplitude-dependent tune-shifts

We can compensate chromaticity by inserting sextupoles in dispersive sections.

/yﬂ\i Sextupole
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Amplitude-dependent tune-shifts

We can compensate chromaticity by inserting sextupoles in dispersive sections.

Sextupole

No chromaticity is nice but sextupoles are nonlinear elements and they In
turn introduce another type of tune-shitt: amplitude dependent.

Amplitude-dependent tune-shift
for a sextupole + phase advance

Tune-shift is proportional to the action:
2 + 2
2

Particles oscillating with larger amplitudes are
more susceptible to tune-shifts and may be lost
due to resonances => limits dynamic aperture

Iy =
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Transfer maps

Transfer map: describes how the particle moves
or rather how to map the incoming coordinates to

outgoing coordinates.

Maps can describe: a single element, a cell, the

whole accelerator (full turn map).

A linear map can be represented by matrix, e.g.

a quadrupole or drift space:

(%)

Drift space:

()= 1)) wo=(
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Transfer map for quadrupole
followed by drift space:

M = MpMg




Normalized phase space

Poincaré section:

()= (),

Parametrization of transfer matrix:

M:(\/E (1)><Co§u sin,u) ﬁ 0
—v5 i/ \—sinp cosp) \ VB

M=A"1RA

A particle under a linear transter map trace
out ellipses in phase-space. It we transfer into
normalized phase space we get circles
iInstead described by the rotation matrix R.
The angle p is called the phase advance.

We can write:

2)-(Z %))

The action Jis an invariant of the motion:
T+
2

Jim Ogren | FREIA meeting 7123

J =

1.5

cssseee

ooseney

vnn,

Wm ) -M“\.__\
0.5} < \\
H..
i E %%M )

-1.5

* RPS
- NPS

-1.5 -1 -0.5

0.5

1 1.5



Hamiltonians

A Hamiltonian H together with Hamiltons equations

describes a particle trajectory.
de OH  da' OH

ds 9z ' ds Oz
Or expressed using the Poisson
bracket:

[f, g] _ df Jg 0f 99 Ex: Hamiltonians for sextupole

Ox Ox'  Ox' Ox and octupole (thin elements):
k
Then Hamilton's equations can be Hgext = 3—?@3 — 3l‘y2)
written as: '
Third order

dx dx’ ks

Fourth order
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Nonlinear maps

The Lie operator

Of Og  Of Og The Lie operator fon gis the
frg=lhal=o o 5 Poisson bracket.

We can can calculate the change of a particle passing through an
element with Hamiltonian H by a Lie transformation of the coordinate
function:

T7. 1
T=e Mr=x—[H x|+ o H, |H,x|| + ...
Which essentially is a Taylor map. The Lie transformation maps
iIncoming coordinates to outgoing coordinates for a nonlinear element
described by Hamiltonian H.
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Lie Algebra

H(za,15) P H(xy,2})
<€
Similarity transformation: Q o = R O
_ :—H (Z1):
M = Re We can move the Hamiltonian to another location
— Re—H@): p—1p via the similarity transformation.

_ :—H(Rfl):
— € R We can transform the operator by transforming the
_ o~ H@2): p generator.

Campbell-Baker-Hausdorff formula

Ha:gHp: _ o H: CBH tells us how to

concatenate Hamiltonians

e:
where

1 1
H:HA+HB+§[HA,HB]‘|—E Hqa—Hp,|Ha,Hp] | + ...
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Moving all elements to reference point

By iterative usage of the similarity transtorm and CBH we can
represent the whole beam line as a linear map + a nonlinear kick.

H H H Ho H .
; 4 - First move H4 and

R4 .
concatenate with Hs, .
Z?’ then move Hs etc. — — Super-kick
2
7 R 7
H

We have written a code that can represent polynomials of (x, X', Y, V'),
and concatenate the Hamiltonians consistently up to 5th order. But to
see what resonances and tune-shifts we get we need to transform

our effective Hamiltonian into a normal form, which will be explained
next.
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Normal forms

We can propagate a Hamiltonian by propagating its coetfticients
HY =nMz; = iV R y; = RWy, Linear transform:

BV = (R hW) = gWRM y = Rx

To write a map M on its normal form we need to find K and C such

that:
M = e:—[—I:R _ e:—K':e:—C:fze:K':
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Normal forms

We can propagate a Hamiltonian by propagating its coetfticients
HY =nMz; = iV R y; = RWy, Linear transform:

BV = (R hW) = gWRM y = Rx

To write a map M on its normal form we need to find K and C such

that:
M = e:—I—I:R _ e:—K':e:—C:fze:K':

We can re-write as

e:_H:Re:_K:R_l _ e:—I(:e:—C’:

A similarity transform! We get:

:—H:e:—SK: : K:e:—C:

C = e
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Normal forms

We can propagate a Hamiltonian by propagating its coetfticients
HY =nMz; = iV R y; = RWy, Linear transform:

BV = (R hW) = gWRM y = Rx

To write a map M on its normal form we need to find K and C such

that:
M = e:_H:R _ e:—K':e:—C:f{e:K':

We can re-write as This we can write order-by-order:

H=H® r g“ L g®)
K = K®) _|_K(4) _|_K(5)

A similarity transform! We get: C =08 4+0cW 4B
:—H:e:—SK: _ e:—I(:e:—C: SK — S(B)K(S) 4 5(4)K(4) 4 S(5)K(5)

e:_H:Re:_K:R_l _ e:—I(:e:—C’:

€
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Normal forms cont’d

—H: (—SK: —K: —C"
We solve order-by-order € & =€ e

—H®): g K6, —K®): 0B,
C C = C C 1 1
H = Ha+ Hp+3 [Ha, Hg] + E[HA —HB,[HA,HB]} Yo

From CBH we get:
H® + O KB = G 1 0BG 4 higher orders

Since CB) = 0 (no tune-shift term of third order) we can write

K® = (1 - @)1 g®
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Normal forms cont’d

—H: (—SK: —K: —C"
We solve order-by-order € & =€ e

—H®): g K6, —K®): 0B,
C C = C C 1 1
H = Ha+ Hp+3 [Ha, Hg] + E[HA —HB,[HA,HB]} Yo

From CBH we get:
H® + O KB = G 1 0BG 4 higher orders

Since CB) = 0 (no tune-shift term of third order) we can write

K®) — (1-— 5(3))—1H(3)
Keeping all order up to fourth order:

H®Y 4 sWKH 4 1 [H(3) S(3>K(3)} = KW 4+ oW 4 higher orders
2 9
We solve for C4 and K#:

(1— SMYE®W 4y oW = g@ 4 1 [ 73 () K<3>]
2 Y

In fourth order we have nonzero tune-shift polynomial
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Compensating the tune-shift

(1— §OYK® L oW — @ 4 1 { 73 o) K<3>}
2 Y

We cannot invert (1 - S@) because it has 3 zero eigenvalues. But S¥Wis
constructed from a pure rotation matrix A and these zero eigenvalues

corresponds to eigenvector monomials: . .
P J which are proportional to:

(z* +27)* (v +y?)? (@@ +2) (Y +y7) J2, 2, J.d,

We invert (1 - S) by SVD and construct a projector from the eigenvectors
corresponding to the zero eigenvalues, i.e. a null space projector:

_ B IV >< U]
UAVT:(1_5(4)) 1 Pr_z <V‘U>

eig=0
Then we get C% by projecting RHS onto
null space:

o _ py { @1 HE, 50 )] }
2 9
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Compensating the tune-shift

(1— §OYK® L oW — @ 4 1 { 73 o) K(a)}
2 Y

We cannot invert (1 - S@) because it has 3 zero eigenvalues. But S¥Wis
constructed from a pure rotation matrix A and these zero eigenvalues

corresponds to eigenvector monomials: which are proportional to:
(5132—|—£IJ,2)2 (y2_|_y/2)2 (:c2+:v’2)(y2+y’2) Ja;27 sz Jny

Amplitude-dependent tune-shift

We invert (1 - S4) by SVD and construct a projector P o o A A o
corresponding to the zero eigenvalues, i.e. a null sp

_ B IV >< U] T
UAVT:(1_5(4)) 1 Pr_z <V‘U> E

eig=0 @
Then we get C by projecting RHS onto gl
null space: /////’//ij
0@ _ py { RO 1O, 5O KO) } P el
2 Y 0 0.05 ] startog.;o o 0.15 0.2
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Compensating the tune-shift

(1— §OYK® L oW — @ 4 1 { 73 o) K(s)}
2 Y

We cannot invert (1 - S@) because it has 3 zero eigenvalues. But S¥Wis
constructed from a pure rotation matrix A and these zero eigenvalues

corresponds to eigenvector monomials: . .
P J which are proportional to:

2 2\2 2 2\2 2 2 2 2

(" +27)° (W +y7)° @ +27)(y" +y") J2, T2, T,
We invert (1 - S4) by SVD and construct a projector \10° _fora sextupole + phase advance
corresponding to the zero eigenvalues, i.e. a null sp

V >< U|

T 1 a(d)-1 _ N

UAV: =(1-5"%) Pr e§o<V‘U> w
Then we get C by projecting RHS onto ol
null space: /////’//ij

o _ py { @1 HE, 50 )] }
2 9

0 0.05 0.1 0.15 0.2
x start position

Adding octupoles only contribute linearly to fourth order:

@) — Py {ﬁ(él) 4 g4 4 1 [H(S) S(g)K(g)]} To compensate tune-shift: set
2 Y

octuple strengths such RHS = Q.
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Optimum placement of octuples

We start with four octuples (horizontal motion only) and write the
Hamiltonians in action-angle variables: _4, "

H = k(zcos ¢+ 2’ sin @) + k(x cos ¢ — 2’ sin ¢)* ‘ ‘ fiferej:e ‘ ‘
= k [2* cos® ¢ + 42”2’ cos® ¢ sin ¢ + 6%z cos® ¢ sin® ¢ pot
+4z1"® cos ¢ sin® ¢ + 2'* sin® ¢
+ k [2* cos® ¢ — 42°' cos® ¢ sin ¢ + 6272’ cos” ¢ sin® ¢ Move via similarity transform
—4z1" cos ¢ sin® ¢ + 2 sin® ¢

= 2k {z* cos® ¢ + 62°2'% cos® psin ¢ + 2'* sin” ¢}
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Optimum placement of octuples

We start with four octuples (horizontal motion only) and write the

Hamiltonians in action-angle variables: s, b

H = k(zcos ¢+ 2’ sin @) + k(x cos ¢ — 2’ sin ¢)* ‘ ‘ filferej:e ‘ ‘
= k [2* cos® ¢ + 42”2’ cos® ¢ sin ¢ + 6%z cos® ¢ sin® ¢ pot
+4z1"® cos ¢ sin® ¢ + 2'* sin® ¢
+ k [2* cos® ¢ — 42°' cos® ¢ sin ¢ + 6272’ cos” ¢ sin® ¢ Move via similarity transform
—4z1" cos ¢ sin® ¢ + 2 sin® ¢

= 2k {:U4 cos? ¢ + 6222 cos? ¢psin ¢ + ' sin gb}

Short-hand notation: ¢ =cos¢1 S; =sing; etc.

Move all four octupoles to reference point:

H =2k [$4Cil + 6272 % cist + x’4sﬂ + 2k2 [x4c§l + 622?355 + x’%%}

— 23}4(]{‘10411 —+ kQC;L) -+ 1237233/2(]@1(3%3% + kQCgS%) + 2517/4(]{‘1341L + k233)

Terms with x3x’ and xx’3 etc. cancel because symmetry => do not drive
resonances.
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¢>1 , ¢2 [degrees]

Optimum placement of octuples cont’d

In order to compensate the amplitude-dependent tune-shift we need
(2% +2)(y* + ¢

ferms containing: (:132 +$/2)2

This gives us a relation between
ki/ke and the phase advances:

— 2 o

(o]
o

|
Reference
point

Phases of octupoles to reference point

(0]
o
T

~
o
T

(o))
S
\

(o)
o
T

N
o

W
o
T

N
o
T

—
o
T

o

-—
-—
—

o
o

1 1.5 2
Octupole excitation ratio k ; /k2
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¢>1 , ¢2 [degrees]
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Optimum placement of octuples cont’d

In order to compensate the amplitude-dependent tune-shift we need
terms containing: (22 + 22?2 (P +y?)? (@22 + )

This gives us a relation between
ki/ke and the phase advances:
—¢»

P2

(o]
o

. ‘ —P1 : P1 ‘ ‘
|
Reference

point
Phases of octupoles to reference point

There is a solution with three equally
powered octupoles and 60 degrees

(0]
o
T

~
o
T

D
o

(o)
o
T

N
o

W
o
T

N
o
T

—
o
T

o

phase advance:

-—
-—
—

k

b = 60°

k
H— -

o
o

1 1.5
Octupole excitation ratio k 1/k2
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Optimum placement of octuples cont’d

The 4D Hamiltonian for an octupole in real phase space:

Bz
y = /By

Carrying out the same procedure as before (action-angle variables etc.)
for the triplet we get:

~ 9
H = 5 [kmji + kny2 — 4kmyt]:ct]y o QkazmeJy COS<2¢ZB o 2¢y)]

H =k (B2* — 68,8,2°7° + B,4") = koZ* — Okyy TG + ky

This drives the 2Qx - 2Qy resonance. In 2D we see that this setup cancel
all resonances except oneWe can solve this by adding another triplet, i.e.
a 'six-pack”:

k/2 k/2 k/2 k/2 k/2 k/2

Sy = 60° B 6, = 60° = arb. Sy = 60° B 6, = 60°
— 60° — 60° = Az +90 — 60° — 60°

This setup can cancel a given tune-shift term W|thout drlvmg any fourth
order resonances! In order to cancel all three tune-shift terms we need
three six-packs.
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Simulation: Octupoles + phase advance

A simple setup with three

Smear: |
: 0.06 | 2y _ 2
setups of octupoles + a sz
2 0.04 | i B
phase advance: (J?) — (J) Pic -
oJj — 0.02 | 4§ 0
( J>2 I () %
e 0 I ;‘\(:‘:‘ z{:‘f
-0.02 B 2
. ‘i‘;. '_3_/1
3 octupoles oot |y
: -0.06 | R
-0.08 - - -
‘ ‘ ‘ i -0.05 0 0.05
X
\\ Smear p|0tS {0 see resonances
35 _><1O'5 Different octupole configurations
3 triplets .|
: ——3 octupoles
o5l |——3triplets
m m m 3 six-packs

3 six-packs

T v T 1 1 |
0 0.1 0.2 0.3 0.4 0.5
Horizontal tune
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Resonances

Plot smear on top of tune diagram to identify resonances

ance diagram of order 5

Zo.
0 /
=S K
1AV *
<
0.5
Qx
35 %107 Different octupole configurations
3F
——3 octupoles
o5L |—38 trjplets
3 six-packs
— 2+
3]
[0}
£
D15t

T . 4 1 1 ]
0 0.1 0.2 0.3 0.4 0.5
Horizontal tune
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Resonances

Plot smear on top of tune diagram to identify resonances

Resonance diagram of order 5

09|
0.8
0.7}
0.6
Zo.
0 7
)i/ll\bl A\ AN XS
03|
o 2\ 0.44 |
0.43 }
00 0.‘1 0.2 013 0.4 %5 0.6 0.‘7 0.8 019 1
0.42
«107° Different octupole configurations 0.41F
35¢F =
© |
sl 0.4
——3 octupoles
25 |—3triplets 0.39 d JlXM
3 six-packs
s 2f 0.38 | o R S
£
P15t
0.37 |
1tk
0.36 ! !
0.5¢ 0 0.1 0.2 0.3 0.4 0.5
Qx
% 01 0.2 03 04 05 S -

Horizontal tune
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Resonances

Plot smear on top of tune diagram to identify resonances

SQ:B o Qy Qx + QQy
2Qz +2Q, 0, — 1
Q:l: o SQy ’

\ / /

1 Resonance diagram of order 5
0.9
0.8
0.7
0.6
&05
0. / /
SANS N1/ \[ 7 AVZAN4
M\*/ \ \
1AV AV
0.3}
o 2\ 0.44 |
0.1
0.43 |
OO 0.‘1 0.2 013 0.4 0.5 0.6 O.‘7 0.8 019 1
Qx
0.42 |
. : —_ 0.41}
3.5 x10 Different octupole configurations

e
E——

>
e/
o Y
——3 octupoles
o5l |——3triplets 0.39
3 six-packs
o 2f 0.38 LT
()
£
P45}

0.37
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0 0.1 0.2 0.3 0.4 0.5

T . 4 1 1 ]
0 0.1 0.2 0.3 0.4 0.5 = - .
Horizontal tune
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Simulation - extended model

Trombone Two straight sections (NPS):
| \ | bE 9 :
Arc NP < - a’trombone” for setting the overall tune
- a section containing the octupoles
RPS

- Simulate the three different octupole
configurations

Reference
point

Each arc consists of 9 FODO cells.

s [m]
The FODO cells include:
- 2 dipole bends
- 2 sextupoles for chromaticity
correcton . | T - . ................ T -
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Simulation - results C D

Tune-shift for the different octuple configurations:

0.43 0.382

0.425 |

o
 0.42
o
[
=
]
N
S 0.415
I

x FFT x FFT
041+ | * FFT -3 octupoles % FFT - 3 octupoles
FFT - 3 triplets 0.37 FFT - 3 triplets
% FFT - 3 six-packs ' % FFT - 3 six-packs
——Normal Form ——Normal Form
0.405 : : : . . . 0.368 : : : : : X
0 0.01 0.02 0.03 0.04 0.05 0.06 0 0.01 0.02 0.03 0.04 0.05 0.06
Amplitude sqrt(Jy) Amplitude sqrt(Jy)

Configuration with 3 octupoles reduces stability.
Using triplets are more stable and six packs even more so.

Jim Ogren | FREIA meeting 21/23




Slmulatlon smear Dlots

- ll\lo octupolesl 3 octupoles
1t - 1t - . _ .
‘ e Configuration with
08l ] 08l only three
S 06 ! - octupoles worsen
‘ stability and
04+ 04+ .
Introduces some
021 : 02} : additional
J I U{ L
i , L J ) , , | J\__] resonances.
0 0.1 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Horlzontal tune Horizontal tune
i | | 3 triplets | | 1o | I3six packsl | [ TleetS or S|X-
packs do not add
1 ' resonances.
0.8} 1 0.8}
I 5. * [For this case
g VOor 2 o. |
® ? resonances are
A ' A ' dominated by the
02} - 02] | sextuplets.
JJ U I
0.1 04 .

Horizontal tune Horizontal tune
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Conclusions

e Powerful analytical method
e Code to treat Hamiltonians and normal forms

e Optimum placement of octupoles for tune-shift
compensation

Future work
e Include resonant normal forms
e Apply method to other related issues

e Apply method to an actual machine
° . .

Thank you for your attention!
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