Amplitude-dependent tune-shift compensation method using Hamiltonians, Lie Algebra and Normal Forms

Jim Ögren

FREIA-meeting, Nov 28, 2016

Outline

- Introduction
- Transfer maps
- Hamiltonians and Lie Algebra
- Normal Forms
- Example: Tune-shift compensation
- Simulation results
- Conclusions

Introduction

Particles oscillate around design orbit. Number of oscillations is the tune of accelerator.
E.g. $Q x=7.23$ integer and fraction part, latter is important for beam stability.

Tune is a design parameter and depends on the optics of the accelerator, i.e. the spacing and strengths of the quadrupoles:

Introduction

Particles oscillate around design orbit. Number of oscillations is the tune of accelerator.
E.g. $Q x=7.23$ integer and fraction part, latter is important for beam stability.

Tune is a design parameter and depends on the optics of the accelerator, i.e. the spacing and strengths of the quadrupoles:

Chromaticity: tune is energy-dependent. Since a beam has an energy distribution we have a tune distribution - or a "tune spread".

Stability and tune-shifts

The tune cannot be an integer since oscillations would amplify each turn.

Higher order resonances require that no perturbations affect the coherence over a number of turns. Number of turns gives the order of the resonance.

General resonance condition:

$$
m Q_{x}+n Q_{y}=k
$$

where m, n and k are integers.

All resonance lines up to 4th order

Stability and tune-shifts

The tune cannot be an integer since oscillations would amplify each turn.

Higher order resonances require that no perturbations affect the coherence over a number of turns. Number of turns gives the order of the resonance.

All resonance lines up to 4th order

General resonance condition:

$$
m Q_{x}+n Q_{y}=k
$$

where m, n and k are integers.

All resonance lines up to 8th order

Amplitude-dependent tune-shifts

We can compensate chromaticity by inserting sextupoles in dispersive sections.

Amplitude-dependent tune-shifts

We can compensate chromaticity by inserting sextupoles in dispersive sections.

Amplitude-dependent tune-shifts

We can compensate chromaticity by inserting sextupoles in dispersive sections.

No chromaticity is nice but sextupoles are nonlinear elements and they in turn introduce another type of tune-shift: amplitude dependent.

Tune-shift is proportional to the action:

$$
J_{x}=\frac{x^{2}+x^{\prime 2}}{2}
$$

Particles oscillating with larger amplitudes are more susceptible to tune-shifts and may be lost due to resonances => limits dynamic aperture

Transfer maps

Transfer map: describes how the particle moves or rather how to map the incoming coordinates to outgoing coordinates.
 whole accelerator (full turn map).

A linear map can be represented by matrix, e.g. a quadrupole or drift space:

$$
\begin{aligned}
\binom{\bar{x}}{\bar{x}^{\prime}} & =\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)\binom{x}{x^{\prime}} \\
M_{Q} & =\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)
\end{aligned}
$$

Drift space:

$$
\binom{x_{2}}{x_{2}^{\prime}}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\binom{\bar{x}}{\bar{x}^{\prime}} \quad M_{D}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)
$$

Transfer map for quadrupole followed by drift space:

$$
M=M_{D} M_{Q}
$$

Normalized phase space

Parametrization of transfer matrix:

$$
M=\left(\begin{array}{cc}
\sqrt{\beta} & 0 \\
-\frac{\alpha}{\sqrt{\beta}} & \frac{1}{\sqrt{\beta}}
\end{array}\right)\left(\begin{array}{cc}
\cos \mu & \sin \mu \\
-\sin \mu & \cos \mu
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{\beta}} & 0 \\
\frac{\alpha}{\sqrt{\beta}} & \sqrt{\beta}
\end{array}\right)
$$

Poincaré section:

$$
\binom{x}{x}_{n+1}=M\binom{x}{x^{\prime}}_{n}
$$

$M=A^{-1} R A$
A particle under a linear transfer map trace out ellipses in phase-space. If we transfer into normalized phase space we get circles instead described by the rotation matrix R. The angle μ is called the phase advance.

We can write:

$$
\binom{\tilde{x}}{\tilde{x}^{\prime}}=\left(\begin{array}{cc}
\frac{1}{\sqrt{\beta}} & 0 \\
\frac{\alpha}{\sqrt{\beta}} & \sqrt{\beta}
\end{array}\right)\binom{x}{x^{\prime}}
$$

The action J is an invariant of the motion:

$$
J=\frac{\tilde{x}+\tilde{x}^{\prime}}{2}
$$

Hamiltonians

A Hamiltonian H together with Hamiltons equations describes a particle trajectory.

$$
\frac{d x}{d s}=\frac{\partial H}{\partial x^{\prime}} \quad ; \quad \frac{d x^{\prime}}{d s}=-\frac{\partial H}{\partial x}
$$

Or expressed using the Poisson bracket:

$$
[f, g]=\frac{\partial f}{\partial x} \frac{\partial g}{\partial x^{\prime}}-\frac{\partial f}{\partial x^{\prime}} \frac{\partial g}{\partial x}
$$

Then Hamilton's equations can be written as:

$$
\frac{d x}{d s}=[-H, x] \quad ; \quad \frac{d x^{\prime}}{d s}=\left[-H, x^{\prime}\right]
$$

Ex: Hamiltonians for sextupole and octupole (thin elements):

$$
H_{\mathrm{sext}}=\frac{k_{2}}{3!}\left(x^{3}-3 x y^{2}\right)
$$

Third order

$$
H_{\mathrm{oct}}=\frac{k_{3}}{4!}\left(x^{4}-6 x^{2} y^{2}+y^{4}\right)
$$

Fourth order

Nonlinear maps

The Lie operator

$$
: f: g=[f, g]=\frac{\partial f}{\partial x} \frac{\partial g}{\partial x^{\prime}}-\frac{\partial f}{\partial x^{\prime}} \frac{\partial g}{\partial x} \quad \begin{aligned}
& \text { The Lie operator } f \text { on } g \text { is the } \\
& \text { Poisson bracket. }
\end{aligned}
$$

We can can calculate the change of a particle passing through an element with Hamiltonian H by a Lie transformation of the coordinate function:

$$
\bar{x}=\mathrm{e}^{-: H:} x=x-[H, x]+\frac{1}{2!}[H,[H, x]]+\ldots
$$

Which essentially is a Taylor map. The Lie transformation maps incoming coordinates to outgoing coordinates for a nonlinear element described by Hamiltonian H.

Lie Algebra

Similarity transformation:

$$
\begin{aligned}
\mathcal{M} & =R \mathrm{e}^{:-H\left(\vec{x}_{1}\right):} \\
& =R \mathrm{e}^{:-H\left(\vec{x}_{1}\right):} R^{-1} R \\
& =\mathrm{e}^{:-H\left(R \vec{x}_{1}\right):} R \\
& =\mathrm{e}^{:-H\left(\vec{x}_{2}\right):} R
\end{aligned}
$$

We can move the Hamiltonian to another location via the similarity transformation.

We can transform the operator by transforming the generator.

Campbell-Baker-Hausdorff formula

$$
\mathrm{e}^{: H_{A}:} \mathrm{e}^{: H_{B}:}=\mathrm{e}^{: H:}
$$

CBH tells us how to concatenate Hamiltonians
where

$$
H=H_{A}+H_{B}+\frac{1}{2}\left[H_{A}, H_{B}\right]+\frac{1}{12}\left[H_{A}-H_{B},\left[H_{A}, H_{B}\right]\right]+\ldots
$$

Moving all elements to reference point

By iterative usage of the similarity transform and CBH we can represent the whole beam line as a linear map + a nonlinear kick.

First move H_{4} and concatenate with H_{5}, then move H_{3} etc.

We have written a code that can represent polynomials of ($x, x^{\prime}, y, y^{\prime}$), and concatenate the Hamiltonians consistently up to 5th order. But to see what resonances and tune-shifts we get we need to transform our effective Hamiltonian into a normal form, which will be explained next.

Normal forms

We can propagate a Hamiltonian by propagating its coefficients

$$
\begin{aligned}
& H^{(1)}=h_{i}^{(1)} x_{i}=h_{i}^{(1)} R_{i j}^{-1} y_{j}=\tilde{h}^{(1)} y_{j} \\
& \tilde{h}^{(1)}=\left(R^{-1}\right)^{T} h^{(1)}=S^{(1)} h^{(1)}
\end{aligned}
$$

Linear transform:

$$
\vec{y}=R \vec{x}
$$

To write a map M on its normal form we need to find K and C such that:

$$
\mathcal{M}=\mathrm{e}^{:-H:} R=\mathrm{e}^{:-K:} \mathrm{e}^{:-C}: R \mathrm{e}^{: K:}
$$

Normal forms

We can propagate a Hamiltonian by propagating its coefficients

$$
\begin{aligned}
& H^{(1)}=h_{i}^{(1)} x_{i}=h_{i}^{(1)} R_{i j}^{-1} y_{j}=\tilde{h}^{(1)} y_{j} \\
& \tilde{h}^{(1)}=\left(R^{-1}\right)^{T} h^{(1)}=S^{(1)} h^{(1)}
\end{aligned}
$$

Linear transform:

$$
\vec{y}=R \vec{x}
$$

To write a map M on its normal form we need to find K and C such that:

$$
\mathcal{M}=\mathrm{e}^{:-H:} R=\mathrm{e}^{:-K:} \mathrm{e}^{:-C}: R \mathrm{e}^{: K:}
$$

We can re-write as

$$
\mathrm{e}^{:-H}: R \mathrm{e}^{:-K:} R^{-1}=\mathrm{e}^{:-K:} \mathrm{e}^{:-C:}
$$

A similarity transform! We get:

$$
\mathrm{e}^{:-H:} \mathrm{e}^{:-S K:}=\mathrm{e}^{:-K:} \mathrm{e}^{:-C:}
$$

Normal forms

We can propagate a Hamiltonian by propagating its coefficients

$$
\begin{aligned}
& H^{(1)}=h_{i}^{(1)} x_{i}=h_{i}^{(1)} R_{i j}^{-1} y_{j}=\tilde{h}^{(1)} y_{j} \\
& \tilde{h}^{(1)}=\left(R^{-1}\right)^{T} h^{(1)}=S^{(1)} h^{(1)}
\end{aligned}
$$

Linear transform:

$$
\vec{y}=R \vec{x}
$$

To write a map M on its normal form we need to find K and C such that:

$$
\mathcal{M}=\mathrm{e}^{:-H:} R=\mathrm{e}^{:-K:} \mathrm{e}^{:-C} R \mathrm{e}^{: K:}
$$

We can re-write as

$$
\mathrm{e}^{:-H} R \mathrm{e}^{:-K:} R^{-1}=\mathrm{e}^{:-K:} \mathrm{e}^{:-C:}
$$

A similarity transform! We get:

$$
\mathrm{e}^{:-H:} \mathrm{e}^{:-S K:}=\mathrm{e}^{:-K:} \mathrm{e}^{:-C:}
$$

This we can write order-by-order:

$$
\begin{aligned}
H & =H^{(3)}+H^{(4)}+H^{(5)} \\
K & =K^{(3)}+K^{(4)}+K^{(5)} \\
C & =C^{(3)}+C^{(4)}+C^{(5)} \\
S K & =S^{(3)} K^{(3)}+S^{(4)} K^{(4)}+S^{(5)} K^{(5)}
\end{aligned}
$$

Normal forms cont'd

We solve order-by-order

$$
\mathrm{e}^{:-H:} \mathrm{e}^{:-S K:}=\mathrm{e}^{:-K:} \mathrm{e}^{:-C:}
$$

$$
H=H_{A}+H_{B}+\frac{1}{2}\left[H_{A}, H_{B}\right]+\frac{1}{12}\left[H_{A}-H_{B},\left[H_{A}, H_{B}\right]\right]+\ldots
$$

From CBH we get:

$$
H^{(3)}+S^{(3)} K^{(3)}=K^{(3)}+C^{(3)}+\text { higher orders }
$$

Since $C^{(3)}=0$ (no tune-shift term of third order) we can write

$$
K^{(3)}=\left(1-S^{(3)}\right)^{-1} H^{(3)}
$$

Normal forms cont'd

We solve order-by-order

$$
\mathrm{e}^{:-H:} \mathrm{e}^{:-S K:}=\mathrm{e}^{:-K:} \mathrm{e}^{:-C:}
$$

$$
\mathrm{e}^{:-H^{(3)}}: \mathrm{e}^{:-S^{(3)} K^{(3)}:=\mathrm{e}^{:-K^{(3)}}: \mathrm{e}^{:-C^{(3)}}: ~ . ~}
$$

$$
H=H_{A}+H_{B}+\frac{1}{2}\left[H_{A}, H_{B}\right]+\frac{1}{12}\left[H_{A}-H_{B},\left[H_{A}, H_{B}\right]\right]+\ldots
$$

From CBH we get:

$$
H^{(3)}+S^{(3)} K^{(3)}=K^{(3)}+C^{(3)}+\text { higher orders }
$$

Since $C^{(3)}=0$ (no tune-shift term of third order) we can write

$$
K^{(3)}=\left(1-S^{(3)}\right)^{-1} H^{(3)}
$$

Keeping all order up to fourth order:

$$
H^{(4)}+S^{(4)} K^{(4)}+\frac{1}{2}\left[H^{(3)}, S^{(3)} K^{(3)}\right]=K^{(4)}+C^{(4)}+\text { higher orders }
$$

We solve for $\mathrm{C}^{(4)}$ and $\mathrm{K}^{(4)}$:

$$
\left(1-S^{(4)}\right) K^{(4)}+C^{(4)}=H^{(4)}+\frac{1}{2}\left[H^{(3)}, S^{(3)} K^{(3)}\right]
$$

In fourth order we have nonzero tune-shift polynomial

Compensating the tune-shift

$$
\left(1-S^{(4)}\right) K^{(4)}+C^{(4)}=H^{(4)}+\frac{1}{2}\left[H^{(3)}, S^{(3)} K^{(3)}\right]
$$

We cannot invert ($1-S^{(4)}$) because it has 3 zero eigenvalues. But $S^{(4)}$ is constructed from a pure rotation matrix R and these zero eigenvalues corresponds to eigenvector monomials:

$$
\left(x^{2}+x^{\prime 2}\right)^{2} \quad\left(y^{2}+y^{\prime 2}\right)^{2} \quad\left(x^{2}+x^{\prime 2}\right)\left(y^{2}+y^{\prime 2}\right)
$$

which are proportional to:

$$
J_{x}^{2}, \quad J_{y}^{2}, \quad J_{x} J_{y}
$$

We invert ($1-S^{(4)}$) by SVD and construct a projector from the eigenvectors corresponding to the zero eigenvalues, i.e. a null space projector:

$$
U \Lambda V^{T}=\left(1-S^{(4)}\right)^{-1} \quad \operatorname{Pr}=\sum_{\text {eig=0 }} \frac{|V><U|}{<V \mid U>}
$$

Then we get $C^{(4)}$ by projecting RHS onto null space:

$$
C^{(4)}=\operatorname{Pr}\left\{H^{(4)}+\frac{1}{2}\left[H^{(3)}, S^{(3)} K^{(3)}\right]\right\}
$$

Compensating the tune-shift

$$
\left(1-S^{(4)}\right) K^{(4)}+C^{(4)}=H^{(4)}+\frac{1}{2}\left[H^{(3)}, S^{(3)} K^{(3)}\right]
$$

We cannot invert ($1-S^{(4)}$) because it has 3 zero eigenvalues. But $S^{(4)}$ is constructed from a pure rotation matrix R and these zero eigenvalues corresponds to eigenvector monomials:

$$
\left(x^{2}+x^{\prime 2}\right)^{2} \quad\left(y^{2}+y^{\prime 2}\right)^{2} \quad\left(x^{2}+x^{\prime 2}\right)\left(y^{2}+y^{\prime 2}\right)
$$

which are proportional to:

$$
J_{x}^{2}, \quad J_{y}^{2}, \quad J_{x} J_{y}
$$

We invert ($1-S^{(4)}$) by SVD and construct a projector corresponding to the zero eigenvalues, i.e. a null sp $U \Lambda V^{T}=\left(1-S^{(4)}\right)^{-1} \quad \operatorname{Pr}=\sum_{\text {eig }=0} \frac{|V><U|}{\langle V \mid U\rangle}$
Then we get $C^{(4)}$ by projecting RHS onto null space:

$$
C^{(4)}=\operatorname{Pr}\left\{H^{(4)}+\frac{1}{2}\left[H^{(3)}, S^{(3)} K^{(3)}\right]\right\}
$$

Amplitude-dependent tune-shift for a sextupole + phase advance

Compensating the tune-shift

$$
\left(1-S^{(4)}\right) K^{(4)}+C^{(4)}=H^{(4)}+\frac{1}{2}\left[H^{(3)}, S^{(3)} K^{(3)}\right]
$$

We cannot invert ($1-S^{(4)}$) because it has 3 zero eigenvalues. But $S^{(4)}$ is constructed from a pure rotation matrix R and these zero eigenvalues corresponds to eigenvector monomials:

$$
\left(x^{2}+x^{\prime 2}\right)^{2} \quad\left(y^{2}+y^{\prime 2}\right)^{2} \quad\left(x^{2}+x^{\prime 2}\right)\left(y^{2}+y^{\prime 2}\right)
$$

which are proportional to:

$$
J_{x}^{2}, \quad J_{y}^{2}, \quad J_{x} J_{y}
$$

We invert ($1-S^{(4)}$) by SVD and construct a projector corresponding to the zero eigenvalues, i.e. a null sp $U \Lambda V^{T}=\left(1-S^{(4)}\right)^{-1} \quad \operatorname{Pr}=\sum_{\text {eig }=0} \frac{|V><U|}{\langle V \mid U\rangle}$
Then we get $C^{(4)}$ by projecting RHS onto null space:

$$
C^{(4)}=\operatorname{Pr}\left\{H^{(4)}+\frac{1}{2}\left[H^{(3)}, S^{(3)} K^{(3)}\right]\right\}
$$

Adding octupoles only contribute linearly to fourth order:
$C^{(4)}=\operatorname{Pr}\left\{\tilde{H}^{(4)}+H^{(4)}+\frac{1}{2}\left[H^{(3)}, S^{(3)} K^{(3)}\right]\right\}$
To compensate tune-shift: set octuple strengths such RHS $=0$.

Optimum placement of octuples

We start with four octuples (horizontal motion only) and write the Hamiltonians in action-angle variables:

$$
\begin{aligned}
\tilde{H}= & k\left(x \cos \phi+x^{\prime} \sin \phi\right)^{4}+k\left(x \cos \phi-x^{\prime} \sin \phi\right)^{4} \\
= & k\left[x^{4} \cos ^{4} \phi+4 x^{3} x^{\prime} \cos ^{3} \phi \sin \phi+6 x^{2} x^{\prime 2} \cos ^{2} \phi \sin ^{2} \phi\right. \\
& \left.+4 x x^{\prime 3} \cos \phi \sin ^{3} \phi+x^{\prime 4} \sin ^{4} \phi\right] \\
+ & k\left[x^{4} \cos ^{4} \phi-4 x^{3} x^{\prime} \cos ^{3} \phi \sin \phi+6 x^{2} x^{\prime 2} \cos ^{2} \phi \sin ^{2} \phi\right. \\
& \left.-4 x x^{\prime 3} \cos \phi \sin ^{3} \phi+x^{\prime 4} \sin ^{4} \phi\right] \\
= & 2 k\left\{x^{4} \cos ^{4} \phi+6 x^{2} x^{\prime 2} \cos ^{2} \phi \sin \phi+x^{\prime 4} \sin ^{4} \phi\right\}
\end{aligned}
$$

$$
+k\left[x^{4} \cos ^{4} \phi-4 x^{3} x^{\prime} \cos ^{3} \phi \sin \phi+6 x^{2} x^{\prime 2} \cos ^{2} \phi \sin ^{2} \phi \quad\right. \text { Move via similarity transform }
$$

Optimum placement of octuples

We start with four octuples (horizontal motion only) and write the Hamiltonians in action-angle variables:

$$
\begin{aligned}
\tilde{H}= & k\left(x \cos \phi+x^{\prime} \sin \phi\right)^{4}+k\left(x \cos \phi-x^{\prime} \sin \phi\right)^{4} \\
= & k\left[x^{4} \cos ^{4} \phi+4 x^{3} x^{\prime} \cos ^{3} \phi \sin \phi+6 x^{2} x^{\prime 2} \cos ^{2} \phi \sin ^{2} \phi\right. \\
& \left.+4 x x^{\prime 3} \cos \phi \sin ^{3} \phi+x^{\prime 4} \sin ^{4} \phi\right] \\
+ & k\left[x^{4} \cos ^{4} \phi-4 x^{3} x^{\prime} \cos ^{3} \phi \sin \phi+6 x^{2} x^{\prime 2} \cos ^{2} \phi \sin ^{2} \phi\right. \\
& \left.-4 x x^{\prime 3} \cos \phi \sin ^{3} \phi+x^{\prime 4} \sin ^{4} \phi\right] \\
= & 2 k\left\{x^{4} \cos ^{4} \phi+6 x^{2} x^{\prime 2} \cos ^{2} \phi \sin \phi+x^{\prime 4} \sin ^{4} \phi\right\}
\end{aligned}
$$

Short-hand notation: $\quad c_{1}=\cos \phi_{1} \quad s_{1}=\sin \phi_{1} \quad$ etc.
Move all four octupoles to reference point:

$$
\begin{aligned}
\bar{H} & =2 k_{1}\left[x^{4} c_{1}^{4}+6 x^{2} x^{\prime 2} c_{1}^{2} s_{1}^{2}+x^{\prime 4} s_{1}^{4}\right]+2 k_{2}\left[x^{4} c_{2}^{4}+6 x^{2} x^{\prime 2} c_{2}^{2} s_{2}^{2}+x^{\prime 4} s_{2}^{4}\right] \\
& =2 x^{4}\left(k_{1} c_{1}^{4}+k_{2} c_{2}^{4}\right)+12 x^{2} x^{\prime 2}\left(k_{1} c_{1}^{2} s_{1}^{2}+k_{2} c_{2}^{2} s_{2}^{2}\right)+2 x^{\prime 4}\left(k_{1} s_{1}^{4}+k_{2} s_{2}^{4}\right)
\end{aligned}
$$

Terms with $x^{3} x^{\prime}$ and $x x^{\prime 3}$ etc. cancel because symmetry $=>$ do not drive resonances.

Optimum placement of octuples cont'd

In order to compensate the amplitude-dependent tune-shift we need terms containing: $\quad\left(x^{2}+x^{\prime 2}\right)^{2} \quad\left(y^{2}+y^{\prime 2}\right)^{2} \quad\left(x^{2}+x^{\prime 2}\right)\left(y^{2}+y^{\prime 2}\right)$

This gives us a relation between k_{1} / k_{2} and the phase advances:

Optimum placement of octuples cont'd

In order to compensate the amplitude-dependent tune-shift we need terms containing: $\left(x^{2}+x^{\prime 2}\right)^{2} \quad\left(y^{2}+y^{\prime 2}\right)^{2} \quad\left(x^{2}+x^{\prime 2}\right)\left(y^{2}+y^{\prime 2}\right)$

This gives us a relation between k_{1} / k_{2} and the phase advances:

There is a solution with three equally powered octupoles and 60 degrees phase advance:

Optimum placement of octuples cont'd

The 4D Hamiltonian for an octupole in real phase space:

$$
H=k\left(\beta_{x}^{2} \tilde{x}^{4}-6 \beta_{x} \beta_{y} \tilde{x}^{2} \tilde{y}^{2}+\beta_{y}^{2} \tilde{y}^{4}\right)=k_{x} \tilde{x}^{4}-6 k_{x y} \tilde{x}^{2} \tilde{y}^{2}+k_{y} \tilde{y}^{4}
$$

$$
\begin{aligned}
& x=\sqrt{\beta_{x}} \tilde{x} \\
& y=\sqrt{\beta_{y} \tilde{y}}
\end{aligned}
$$

Carrying out the same procedure as before (action-angle variables etc.) for the triplet we get:

$$
\tilde{H}=\frac{9}{2}\left[k_{x} J_{x}^{2}+k_{y} J_{y}^{2}-4 k_{x y} J_{x} J_{y}-2 k_{x y} J_{x} J_{y} \cos \left(2 \psi_{x}-2 \psi_{y}\right)\right]
$$

This drives the $2 Q_{x}-2 Q_{y}$ resonance. In 2D we see that this setup cancel all resonances except oneWe can solve this by adding another triplet, i.e. a "six-pack":

This setup can cancel a given tune-shift term without driving any fourth order resonances! In order to cancel all three tune-shift terms we need three six-packs.

Simulation: Octupoles + phase advance

A simple setup with three setups of octupoles $+a$ phase advance:

3 octupoles

3 triplets

3 six-packs

Smear:
 $\sigma_{J}=\sqrt{\frac{\left\langle J^{2}\right\rangle-\langle J\rangle^{2}}{\langle J\rangle^{2}}}$

Smear plots to see resonances

Resonances

Plot smear on top of tune diagram to identify resonances

Resonances

Plot smear on top of tune diagram to identify resonances

Resonances

Plot smear on top of tune diagram to identify resonances

Simulation - extended model

Each arc consists of 9 FODO cells.
Two straight sections (NPS):

- a"trombone" for setting the overall tune
- a section containing the octupoles
- Simulate the three different octupole configurations

The FODO cells include:

- 2 dipole bends
- 2 sextupoles for chromaticity correction

Simulation - results

Tune-shift for the different octuple configurations:

Configuration with 3 octupoles reduces stability. Using triplets are more stable and six packs even more so.

Simulation - smear plots

- Configuration with only three octupoles worsen stability and introduces some additional resonances.
- Triplets or sixpacks do not add resonances.
- For this case resonances are dominated by the sextuplets.

Conclusions

- Powerful analytical method
- Code to treat Hamiltonians and normal forms
- Optimum placement of octupoles for tune-shift compensation

Future work

- Include resonant normal forms
- Apply method to other related issues
- Apply method to an actual machine
- ...

Thank you for your attention!

