Latest results from the MoEDAL experiment

Philippe Mermod, University of Geneva Particle Physics Seminar, Uppsala, 6 March 2017

Physics beyond the Standard Model

Theoretical hints

- Many free parameters
- Forces do not unify
- Naturalness
- Gravity

Experimental evidence

- Neutrino masses
- Dark matter
- Matter-antimatter asymmetry

The LHC is a discovery machine

- What matters is to
 <u>make sure to cover all possible signatures</u>
 - → Photons, leptons, jets, missing energy...
 - Resonances, excesses, deviations, rare decays...
 - New long-lived particles

Long-lived particles in a general-purpose detector

Unconventional signatures, issues with:

- Electronics (eg saturation, timing)
- Triggers
- Object reconstruction
- Acceptance

Long-lived particles in a general-purpose detector

Unconventional signatures, issues with:

LLP

- **Electronics** (eg saturation, timing) •
- Triggers
- **Object reconstruction**
- Acceptance

Complementary approach: **Dedicated detectors!**

The Monopole & Exotics Detector at the LHC

- Dedicated searches for new long-lived highly-ionising particles (HIPs)
- The 7th LHC experiment, located at IP8
- ~70 members, 25 institutes

http://moedal.web.cern.ch/

The Monopole & Exotics Detector at the LHC

- Dedicated searches for new long-lived highly-ionising particles (HIPs)
- The 7th LHC experiment, located at IP8
- ~70 members, 25 institutes

Detector subsystems

- Low-threshold NTD array (z/β > 5)
- High-charge catcher NTD array (z/β > 50)
- TimePix radiation
 background monitor
- Monopole trapping detector

The Monopole & Exotics Detector at the LHC

- Dedicated searches for new long-lived highly-ionising particles (HIPs)
- The 7th LHC experiment, located at IP8
- ~70 members, 25 institutes

http://moedal.web.cern.ch/

MoEDAL probes messengers of new physics which are inaccessible to other LHC experiments.

Detector subsystems

- Low-threshold NTD array (z/β > 5)
- High-charge catcher NTD array (z/β > 50)
- TimePix radiation
 background monitor
- Monopole trapping detector

The MoEDAL physics programme

The MoEDAL physics programme

The monopole

Sources of electric field exist (electrons, protons...)

- Are there magnetic equivalents?

Maxwell's equations (1862)

Without monopoles

With monopoles

 $\nabla \cdot \mathbf{E} = 4\pi \rho_e$

 $\nabla \cdot \mathbf{B} = 0$

 $\nabla \cdot \mathbf{E} = 4\pi \rho_e$

 $\nabla \cdot \mathbf{B} = 4\pi \rho_m$

Dirac's quantisation condition (1931)

Side result of quantum-field theory formulation

$$q_e q_m = n \frac{h}{\mu_0} (n \text{ integer number})$$

- explains electric charge quantisation!
- Fundamental magnetic charge $g_{D} = 68.5$ (with $q_{m} = gec$ and n = 1)
- Very high ionisation energy loss

Schwinger generalised this to dyons (1966)

string

't Hooft and Polyakov's GUT monopole (1974)

U(1) group of electromagnetism is a subgroup of a broken gauge symmetry

- Topological monopole solution.
 Very general result!
- Minimum magnetic charge g_{D} or $2g_{D}$ (depending on model)
- Mass ~ 10^{16} GeV (unification scale)

Non-trivial solutions are allowed in the electroweak theory itself

- Charge 2g_D
- Mass ~ few TeV

PLB 391, 360 (1997) PLB 756, 29 (2016)

But it is one thing to say that monopoles must exist, and quite another to say that we have a reasonable chance of observing one.

22

(1984)

Where to look for monopoles?

• In cosmic rays and in matter

(Phys. Rep. 582, 1 (2015), arXiv:1410.1374)

• At colliders

(Phys. Rep. 438, 1 (2007), arXiv:hep-ph/0611040)

Where to look for monopoles?

• In cosmic rays and in matter

(Phys. Rep. 582, 1 (2015), arXiv:1410.1374)

• At colliders

(Phys. Rep. 438, 1 (2007), arXiv:hep-ph/0611040)

Monopole searches are performed at colliders every time a new energy regime is made accessible

Direct HIP/monopole detection at colliders (1) signature of very highly ionising particle (HIP)

1) General-purpose detectors (OPAL, CDF, ATLAS, CMS...)

- High ionisation
- Pencil-like calorimeter deposit
- Anomalous bending

Direct HIP/monopole detection at colliders (2) signature of very highly ionising particle (HIP)

- 1) General-purpose detectors 4
- 2) Nuclear-track detectors
 - Plastic NTD foil exposure, etching, scanning

- Etch-pit cones (~50 μ m) in successive sheets

Direct HIP/monopole detection at colliders (3) signature of very highly ionising particle (HIP)

- 1) General-purpose detectors
- 2) Nuclear-track detectors
- 3) Induction technique

- Expect monopole-nucleus binding energy ~100 keV (Rept. Prog. Phys. 69, 1637 (2006), arXiv:hep-ex/0602040)
- Persistent current after passage through superconducting coil

27

Direct HIP/monopole detection at colliders signature of very highly ionising particle (HIP)

General-purpose detectors
 Nuclear-track detectors
 Induction technique

All three techniques are needed to cover the full parameter space (see EPJC 72, 1985 (2012), arXiv:1112.2999)

Direct collider monopole searches current limits (assuming $|g| = g_{D}$)

Direct collider monopole searches current limits (assuming $|g| = g_{D}$)

Direct collider monopole searches current limits (assuming $|g| = 2g_{D}$)

Direct collider monopole searches current limits (assuming $|g| = 2g_{D}$)

HIP searches at the LHC

(see EPJC 72, 1985 (2012), arXiv:1112.2999)

- ATLAS and CMS
 - $\rightarrow |g| \leq 2g_{D}$

- → $0.3 \le |z|/\beta \le 100$
- MoEDAL NTD detectors
 - $\rightarrow |g| \leq 9g_D$

- → $5 \le |z|/\beta \le 500$
- MoEDAL trapping detector

$$\Rightarrow |g| \leq 4g_{D}$$

Trapping in beam pipes

$$\Rightarrow |g| \ge 4g_{D}$$

Complementary techniques!

Laboratory of Natural Magnetism, ETH Zurich Magnetically shielded room

DC-SQUID magnetometer 38

MoEDAL in 2012

NTD stacks on surrounding walls

1 array trapping detector prototype Below beam pipe opposite to LHCb

Test arrays exposed to 8 TeV pp collisions

MoEDAL in 2012

NTD stacks on surrounding walls

First LHC constraints on particles with multiple magnetic charge

JHEP 08, 067 (2016)

1 array trapping detector prototype Below beam pipe opposite to LHCb

Test arrays exposed to 8 TeV pp collisions

MoEDAL in 2015/2016

NTD stacks on top of VELO, close to IP + on surrounding walls

TimePix for online monitoring

3 arrays trapping detectors

Thin "shower curtain" NTD within LHCb acceptance

Full arrays exposed to 13 TeV pp collisions

MoEDAL in 2015/2016

NTD stacks on top of VELO, close to IP + on surrounding walls

Thin "shower curtain" NTD within LHCb acceptance

First monopole constraints In 13 TeV collisions

(2017)

3 arrays trapping detectors

Full arrays exposed to 13 TeV pp collisions

Magnetometer calibration

- Two independent methods: convolution and solenoid
- Very good agreement between the two
- Linearity demonstrated in range 0.3-10⁶ g

longitudinal position (mm)

Magnetometer scans

- > 1000 samples
- Persistent current measured for each sample
- Samples with persistent current > 0.25 g_D are set aside as candidates
- Multiple measurements rule out the monopole hypothesis

Magnetic charges in samples (13 TeV exposure in 2015)

PRL 118, 061801 (2017)

• Exclude > 0.5 g_{D} in all samples

Geometry model

 \pm 3% uncertainty in material between IP and trapping volume \rightarrow dominant systematic uncertainty in acceptance

Monopole simulation

- Interpretation in DY pair production
 - Coupling >> 1 → nonperturbative dynamics !
 - Particle gun with flat distributions for modelindependent results
- Geant4 for propagation and energy loss
- Trapping acceptance between 0.1% and 4% for 1–5 g_D and mass up to 6 TeV

$$q\overline{q} \rightarrow \gamma^* \rightarrow M\overline{M}$$

52

Cross-section limits with 2015 exposure

FIG. 2. Cross-section upper limits at 95% confidence level for DY monopole production in 13 TeV pp collisions as a function of mass for spin-1/2 (left) and spin-0 (right) monopoles. The colours correspond to different monopole charges. The solid lines are DY cross-section calculations at leading order.

First monopole constraints in 13 TeV pp collisions
 Probe masses in the TeV regime for up to 5g_D

2016 exposure

- Same cavern conditions as 2015 with 6x more luminosity
- Scans finished last week! No monopoles found!
- Take the limits from previous page and multiply by 1/6

Mass limits (DY model)

mass limits [GeV]	$1g_{\rm D}$	$2g_{\rm D}$	$3g_{\rm D}$	$4g_{\rm D}$
MoEDAL 13 TeV preliminary				
(2015+2016 exposure)			umil	hary
DY spin- $1/2$	1150	1550	9600	1450
DY spin-0	610 <mark>V</mark>	1000	1100	1000
MoEDAL 13 TeV				
(2015 exposure)				
DY spin- $1/2$	890	1250	1260	1100
DY spin-0	460	760	800	650
MoEDAL 8 TeV				
DY spin- $1/2$	700	920	840	
DY spin-0	420	600	560	-
ATLAS 8 TeV				
DY spin- $1/2$	1340		· · · ·	
DY spin-0	1050	—	—	—

Best collider limits for |g| > g_D
Constrain |g| = 4g_D for the first time at the LHC

• Cross-section calculation is highly model-dependent

Near-future prospects

Rough discovery reach estimates

 Assuming 0.2 background events in ATLAS/CMS and ~0.00 background events in MoEDAL

MoEDAL's unique patterns

- Machine vision
 - Modern fast scanners
 - Automatic pattern recognition
- Citizen science the Zooniverse
 - Analysis of images from TimePix and NTDs

NTD exposed to collisions and ion beam

https://www.zooniverse.org/projects/twhyntie/monopole-quest

in big messy images "anything odd?"

Summary

MoEDAL is a dedicated LHC experiment for searching for new charged long-lived particles

- Passive detector techniques robust design
- Complementary to general-purpose experiments
- Pioneering MoEDAL trapping detector first results surpass existing constraints for a range of monopole charges and masses
- MoEDAL is now collecting "oddities" in 13 TeV collisions

