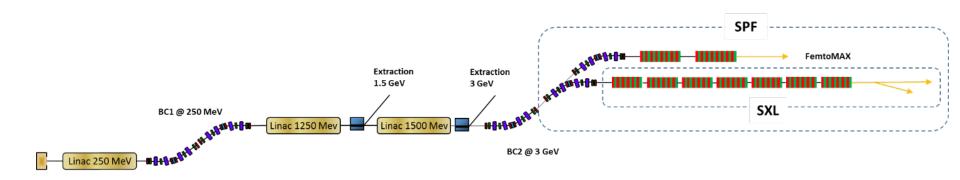
Soft X-ray Laser (SXL) @ MAX IV

Peter Salén

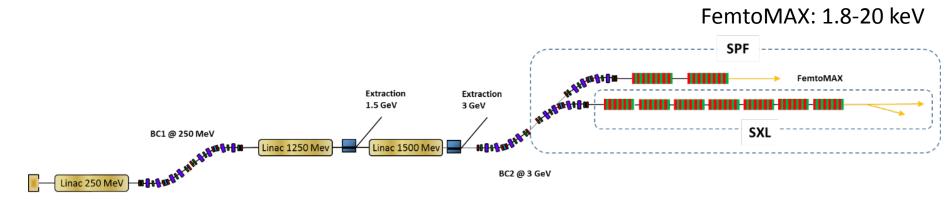

Previous research

- PhD 2007: Femtosecond studies of photodissociation and relaxation processes of molecules in liquid phase
- Employed SUFEL 2007-2017:

<u>Research</u> at, and <u>development</u> of, FELs.

- LCLS Studies of double-core holes
- FELIX New method for obtaining IR-spectra
- Seeding projects at FLASH (ORS, HGHG)
- Development of THz FEL
- Single-cycle attosecond source
- SXL @ MAX IV

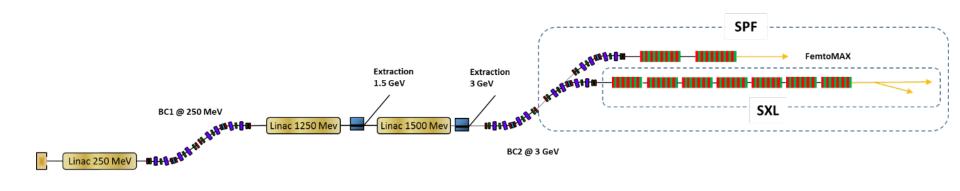
SXL @ MAX IV



Stockholm University Uppsala University Lund University MAX IV KTH, GU

SUFEL

SXL @ MAX IV


SXL parameters

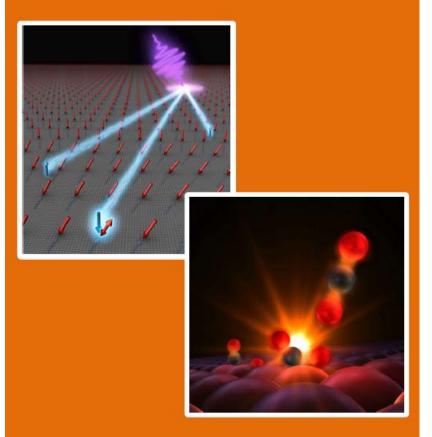
Wavelength	1 nm	5 nm
Photon energy	1 keV	0.25 keV
e-Energy	3 GeV	1.5 GeV
Photon power (peak)	(GW)	(GW)
Photons/pulse	(10 ¹²)	(10 ¹²)
Pulse length (RMS)	10 fs	10 fs
Rep. rate	100 Hz	100 Hz

Features

- SASE baseline design.
- A broad range of pump-possibilities for pump-probe experiments from day one.
- Two-pulse and two-color options will be developed at an early stage.
- Seeding schemes, attosecond pulses and THz upgrades are envisioned at a second stage.

SXL @ MAX IV

	Period (year)
Science Case	2015-2016
Conceptual Design Study	2017-2018
Construction	2019-2022


SXL @ MAX IV – Science Case

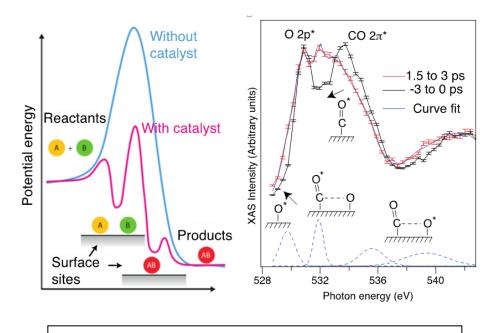
Workshop March 2016

-> Science Case document

The Soft X-ray Laser @ MAX IV

A Science Case for SXL

www.frielektronlaser.se

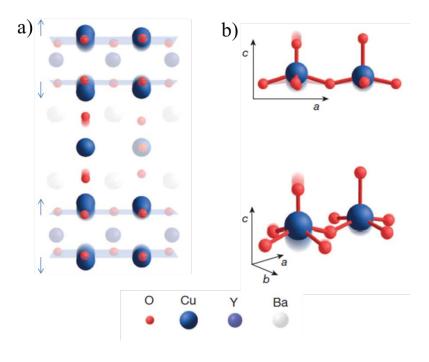

Science Case - Chemistry

Catalysis

To develop sustainable energy sources

Understand catalytic reaction mechanisms

Transition state is the key



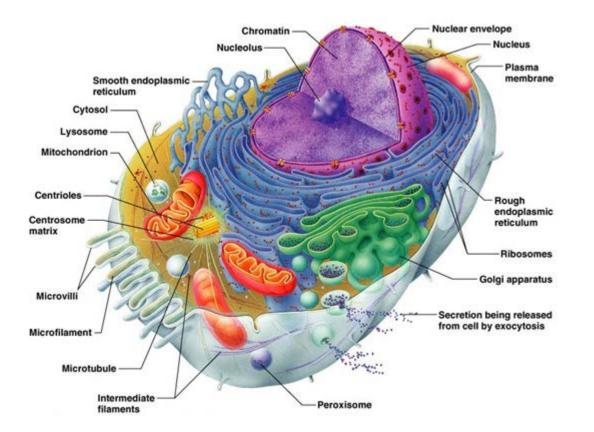
H. Öström et al. Science 347, 978 (2015)

SXL provides broad range of pumping possibilities combined with core-level probing

Science Case – Condensed Matter

Superconductivity

IR-THz pump induce SC properties


X-ray scattering => lattice structure

New insights from SXL using SAXS resonantly at O K-edge?

R. Mankowsky *et al.*, Nature **516**, 71 (2014)

Science Case – Life Science

Imaging living cells

"Human Anatomy & Physiology" E. N. Marieb, Pearson Eduction (2004)

Conceptual Design Study

KAW funding application for CDS 22.7 MSEK

KAW: <u>10.5 MSEK</u> Co-funding: <u>12.2 MSEK</u> (SUFEL, MAX IV, LU)

Human resources: 15 MSEK (Accelerator and FEL work)

Hardware: 7.7 MSEK (Transverse deflecting cavity, low emittance gun) The Soft X-ray Laser @ MAX IV

Funding Application for a Conceptual Design Study

Stockholm University Uppsala University Lund University MAX IV

Conceptual Design Study

Work packages

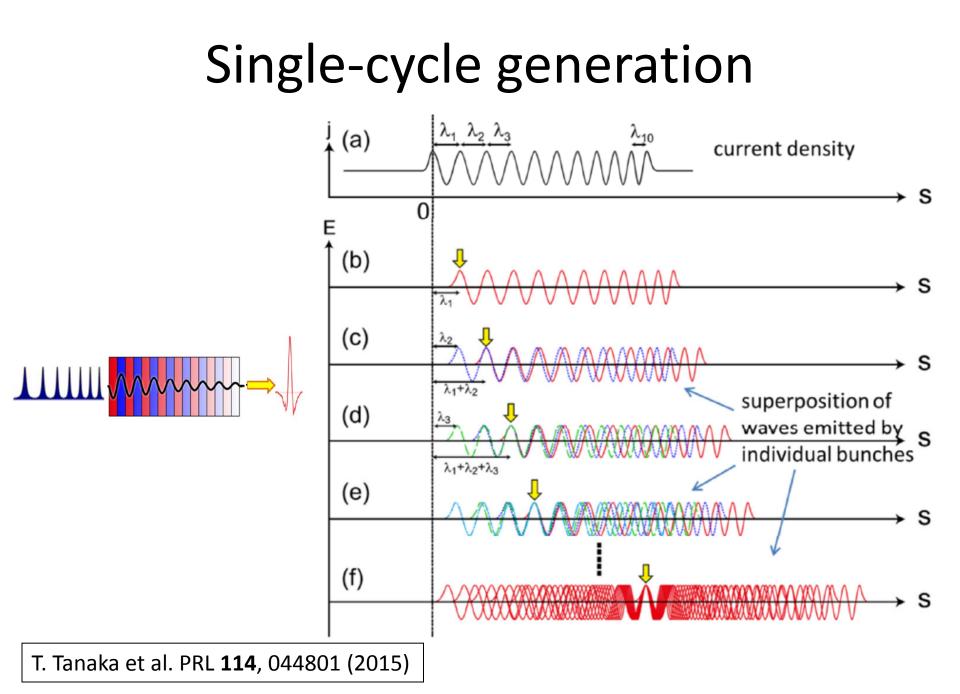
Work package	Description
1	Organisation
2	Science
3	Accelerator
4	FEL
5	Beamline
6	End stations
7	Budget
8	Infrastructure

Conceptual Design Study

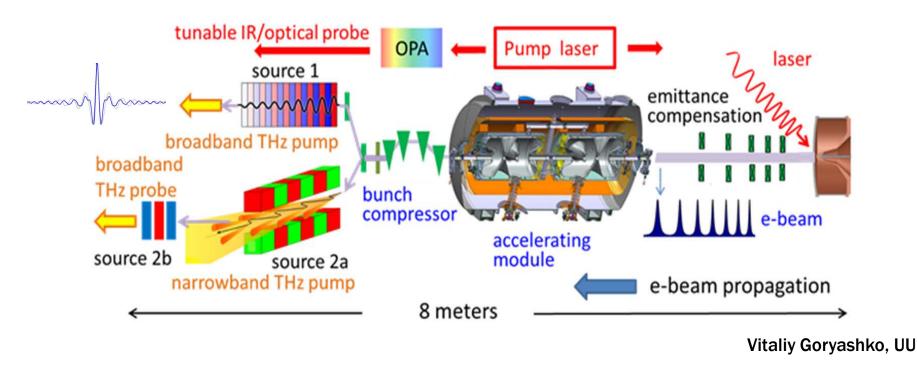
Investigate required linac properties and upgrades

Linac parameters			
Energy	3 GeV		
Energy spread	<0.05% + chirp		
RF frequency	3 GHz		
Rep. rate	1-100 Hz		
Bunch length	10-500 fs		
Charge per bunch	20-200 pC		
Normalised emittance	<1 um		

Pre-study of linac's suitability as FEL driver performed in fall 2016 => <u>No show stoppers</u>


Necessary linac activities during CDS:

- New gun -> reduce emittance (0.4 um)
- Install TDC -> measure emittance, energy spread, bunch profile
- Investigate if bunch compressors must be changed in order to reduce chirp
- More theoretical studies of linac as FEL driver


Possible SXL upgrades based on SUFEL projects

• THz FEL (single-cycle THz pulses)

• Attosecond pulses (single-cycle soft X-ray pulses)

THz FEL

Uniqueness:

- The first THz-source designed specifically for pump-probe experiments
- Covers the range of 1.5 15 THz, exceeding laser-based THz sources
- Quasi-half-cycle pulses with field strength (GV/m) and repetition rate (1-100 kHz)

White Paper on THz Coherent Light Source in Uppsala

Stockholm-Uppsala Centre for

Free Electron Laser Research

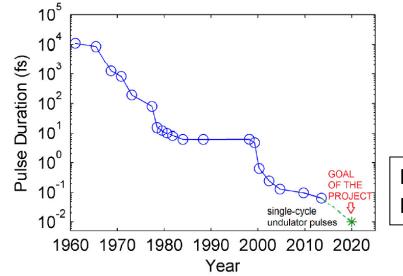
Contents

1.	Exec	utive Summary	3
2.	Intro	duction	4
3.	Scien	ice Case	7
	3.1	Quasi particles and collective excitations	7
		1.1 Excitons	7
		Superconductivity	10
		Magnetism and spin excitations	13
		Dirac materials	15
		4.1 Graphene	16
		4.2 Topological insulators	17
		Surface chemistry	18
		Phase transitions	19
		Semiconductors	21
		Biology	22
		8.1 Biophysics	22
		8.2 Gas-phase spectroscopy of (bio-)molecules	23
		8.3 Biochemistry	24
		Medicine	24
	3.10	Conclusions from science case	25
4.		eptual Design	28
	4.1		28
		The accelerator	29
		Generation of ultra-broadband GV/m THz pulses	30
		Source 1: broadband THz pump	32
		Source 2a: narrowband THz pump	35
		Source 2b: broadband THz probe	36
		X-ray source: optional	37
	4.8	Conclusion	40
5.	Refe	rences	41

Version 1, February 2016

www.frielektronlaser.se

Single-cycle attosecond source


magnetic chicane

Soft X-ray

attosecond pulse

- Lead by Vitaliy Goryashko
- Collaboration with: PITZ (GER), Daresbury (UK), Kharkov (Ukraine), ELI, T. Tanaka (Japan)
- Meeting yesterday at PITZ
- Horizon 2020 application for design study
 Proof-of-principle in THz range at PITZ
 Design for attosecond source

Single-cycle attosecond source

Nature phot. **5**, 655 (2011) Nature phys. **3**, 381 (2007)

	Our technique	Present HHG	Proposed GHHG	ELI-ALPS SHHG
Pulse length (as)	15	70-500	6	5
Photon energy (eV)	>120	15-120	220-330	400-1000
Pulse energy	10 nJ	100 pJ (below 100 as)	1 nJ	10 mJ

Single-cycle attosecond source

Science case

- <u>10 as</u> timescale for **electron correlation**
 - enables detailed study of

charge migration, strongly correlated systems, catalysis, magnetism...

<u>10 nJ</u> required for attosecond pump - attosecond probe -> **attochemistry**

Soft X-rays permits study more molecules and materials with attosecond resolution

	Our technique	Present HHG	Proposed GHHG	ELI-ALPS SHHG
Pulse length (as)	15	70-500	6	5
Photon energy (eV)	>120	15-120	220-330	400-1000
Pulse energy	10 nJ	100 pJ (below 100 as)	1 nJ	10 mJ