The next galactic supenova with the IceCube observatory

Blondin/ Mezzacappa

Lutz Köpke Mainz 2017 Uppsala

Dne page supernova physics

- If star runs out of nuclear fuel, no radiative pressure to balance gravitational infall
- star fights desperately against collapse trying to relieve pressure
- @ bounce on hard core \rightarrow outgoing shock wave \rightarrow shock stalls eventually ...
- neutrinos play important role:

$$\begin{array}{c}
\overset{\leftarrow \text{ cooling}}{\underset{\rightarrow \text{ heating}}{\leftrightarrow}} p + e^{+} \\
\overset{\leftarrow \text{ cooling}}{\underset{\rightarrow \text{ heating}}{\leftarrow}} n + e^{-} \\
\end{array}$$

- about 2 supernovae / 100 y in our galaxy (45% probability in 30 years)
- energy release (R_{core} =10⁶ m → R_{NS} =10⁴ m)

 $\Delta E = \frac{3}{5} \frac{GM_{NS}^2}{R_{NS}} - \frac{3}{5} \frac{GM_{NS}^2}{R_{core}} \approx 2.10^{59} \,\text{MeV}$

 $\begin{array}{ll} \Delta \mathsf{E}_{\nu} &\approx & \Delta \mathsf{E} & (10^{58}\, \mathsf{v's, <E>} \,^{\sim} \, 15 \,\, \text{MeV}) \\ \Delta \mathsf{E}_{kin} &\approx 10^{\text{-2}}\, \Delta \mathsf{E} \\ \Delta \mathsf{E}_{em} &\approx 10^{\text{-4}}\, \Delta \mathsf{E} \end{array}$

How does shock get revived?

Neutrinos in the sky

Supernova 1987A

One of those lucky moments in physics ...

The supernova signal of the KAMIOKANDE-II experiment. It is a part of the laser printer output of the low energy raw data.Nhit is the number of hit photomultipliers.

Only two dozen neutrinos detected in 1987: still publications appearing!

700,000 registered photons for SN at galactic center!

Three phases

Spherically symmetric 10.8 $M_{\odot}\,$ model, explosion triggered by enhanced CC cross section Fischer et al. A&A 517:A80, 2010

.. three phases

Spherically symmetric 10.8 $M_{\odot}\,$ model, explosion triggered by enhanced CC cross section Fischer et al. A&A 517:A80, 2010

Supernovae at South Pole

SN neurtrinos in IceCube

Interaction vertices all hits ~600 m³ effective volume/sensor

For O(10 MeV) v's, IceCube counts single photons on top of dark rate background

Dne page supernova V detection

Large variation between models (progenítor mass, neutrino energies)

- Only for lightest progenitor some overlap with dark noise
- Cosmic muon corrected data helpful for SN outside of central galaxy and trigger stability

Neutrino lighteurve

Supernova breakout burst

E.O'Conner, Ott , ApJ 762, 126 (2013) Latimer-Swesty EOS: **32** 1D models with progenitor masses between 12-120 M_{\odot}

preshock neutronization of the core $e^{+p} \rightarrow n + v_e$ gives progenitor independent peak

Supernova breakout burst

E.O'Conner, Ott , ApJ 762, 126 (2013) Latimer-Swesty EOS: 32 1D models with progenitor masses between 12-120 M_{\odot}

preshock neutronization of the core $e^{+}p \rightarrow n + v_e$ gives progenitor independent peak

Oscillations

Supernova breakout burst

unfortunately, deleptonization peak disappears, when MSW oscillations are taken into account

Rising edge is robust!

Clear shape difference between hierarchies with little progenitor mass dependence

Radial density @ 100 ms

Liebendörfer et al.

Infall terminates by accretion shock $\rightarrow \sim 150$ km, almost stationary Large density contrast: PNS and hot mantle

How can material between PNS and accretion shock expand again rapidly?

Prevailing Theory: v driven delayed supernova ...

1D: Not sufficient to drive symmetric explosion ... 2D: explosion only for low-mass stars ...

3D: Convective bubble: explosion is small surface instability effect

2016: explosion still not fully understood!

Interesting effects in 3D (convection, SASI, LESA), details important ... Garching, Oak-Ridge: rigorous neutrino transport and microphysics

2 interesting 3D effects ...

Neutrino lepton-number flux ($\nu_e - \bar{\nu}_e$)

Irene Tamborra, Neutrino 2016

"standing accretion shock instability" (SASI) leaves imprint on neutrino and gravitational wave signals Lepton-number emission asymmetry (LESA) has implications for oscillations, nucleosynthesis and neutron star kicks

well, this is a theoretician's view ...

Standing accretion shocks

Tamborra et al, Phys. Rev. D.90, 045032 (2014), 27 solar mass → looking at "LESA" direction

See SASI signal at twice the frequency in gravitational waves (GW)

Supernova signatures in GW weak and model dependent (quadrupole mass deformations)

PhysRevLett.104.251101, A&A 517, A80 (2010)

$$L_{v} \approx 0.74 \times 10^{35} \cdot \phi \cdot \left\langle \varepsilon_{v} \right\rangle^{4} \frac{R^{2}}{1 - 2 \frac{G \cdot M}{Rc^{2}}} \left[\frac{\text{erg}}{\text{cm}^{2} \text{s}} \right]$$
$$E_{v}^{total} \approx \frac{0.6 \frac{GM^{2}}{R}}{1 - \frac{GM}{2Rc^{2}}} \quad \text{R: PNS radius } @10^{11} \text{ g/cm}^{3}$$

- Almost perfect luminosity equipartition
- Little EOS dependence
- Cooling strongly affected by particles that may evaporate !

In principle can calculate R and M(PNS) from v light curve

. Cooling phase

But: Horowitz et al. "Nuclear Pasta?" <u>https://arxiv.org/pdf/1611.10226.pdf</u> enhances flux due to rearranged tube (spagetti) or sheets (lasagne) at 10¹⁴ g/cm²

- etrieval of all buffered hits with O(10 ns) timing for adjustable time span
- (partly) automatic transfer and analysis

Advantage for SN search:

- Ine temporal structures
- Precision burst onset time
- Safety net for very close supernovae (e.g. Beteigeuze!), which may "kill DAQ"
- Oincidences between moduls
- 🖲 etc.

Exploiting coincidences ...

hits in several sensors (only 0.25%)

denser detector (DeepCore) helps!

Double/single rate $\approx E_v$

Black hole forming SNc

Not really rare: Death watch": 4 successfull core collapses, 1 failed (arXiv:1411.1761) Likelihood fit on time arrrival pattern \rightarrow some pointing information

Would gain strongly from several distant stations !

Sterile neutrinos

Use mass induced time delay in black hole forming supernovae: $\Delta t \propto \frac{m_{\nu}^2}{E_{\nu}^2}$ distance

$$F_{\overline{\nu}_{e}}(E_{\nu},t) \approx \bar{c}_{ee}F_{\overline{\nu}_{e}}^{0}(E_{\nu},t) + |U_{ei}|^{2}F_{\overline{\nu}_{x}}^{0}(E_{\nu},t) + |U_{e4}|^{2}F_{\overline{\nu}_{x}}^{0}\left(E_{\nu},t-\frac{D}{2c}\left(\frac{m_{4}}{E_{\nu}}\right)^{2}\right)$$
 i=2,3 for IH or NH
Example normal hierarchy:
$$\underbrace{\frac{1500}{\mu_{\mu}}}_{\frac{1}{\nu_{x}}} \underbrace{\frac{1}{\nu_{e}}}_{\frac{1}{\nu_{e}}} \underbrace{\frac{1}{\nu_{e}}}_{\frac{1}{\nu_{e}}} \underbrace{\frac{1}{\nu_{\mu}}}_{\frac{1}{\nu_{e}}} \underbrace{\frac{1}{\nu_{\mu}}}_{\frac{1}{\nu_{e}}} \underbrace{\frac{1}{\nu_{\mu}}}_{\frac{1}{\nu_{e}}} \underbrace{\frac{1}{\nu_{e}}}_{\frac{1}{\nu_{e}}} \underbrace{\frac{1}{\nu_{e}}} \underbrace{\frac{1}{\nu_{e}}} \underbrace{\frac{1}{\nu_{e}}}_{\frac{1}{\nu_{e}}} \underbrace{\frac{1}{\nu_{e}}}_{\frac{1}{\nu_{e}}} \underbrace{\frac{1}{\nu_{e}}} \underbrace{\frac{1}{\nu_{e}}}$$

... for sufficiently high mixing angles masses and mixing well fitted

Нідн спетду пецтіпоз іп сопе соllapse supernovae

Choked jet scenario:

- Iets die out in outer shell
- Isimilar to Gamma-Ray Bursts without γ !
- Wigh energy v's in second time scales

JccCube alert !

One of many IceCube alert systems that are sent out to the community ...

IceCube-160427A

TITLE: GCN CIRCULAR NUMBER: 19363 SUBJECT: ICECUBE-160427A neutrino candidate event: updated direction information DATE: 16/04/29 16:29:47 GMT FROM: Erik Blaufuss at U. Maryland/IceCube <<u>blaufuss@icecube.umd.edu</u>>

IceCube detected a candidate cosmic neutrino IceCube-160427A, "AMON ICECUBE HESE 127853 67093193" at 05:52:32.00 UT on 16/04/27 (<u>http://gcn.gsfc.nasa.gov/notices_amon/67093193_127853.amon</u>) The event was a high energy starting event (HESE) with track-like characteristics and it arrived when the IceCube detector was in a normal operating state.

More sophisticated reconstruction algorithms have been applied offline, with the direction refined to RA=240.57d and DEC=+9.34d (J2000), and the position uncertainty reduced to an estimated 0.6 degrees or 36 arcminuntes radius (stat+sys, 90% containment). We encourage followup by ground and space-based instruments to help identify a possible astrophysical source for the neutrino.

The IceCube neutrino observatory is a cubic-kilometer neutrino detector operating at the geographic south Pole, Antarctica. The IceCube realtime alert point of contact can be reached at <u>roc@icecube.wisc.edu</u>

High energy V's from SNe

SN light curve on the rise ...

...however, probably a SN1a, unlikely to have high neutrino flux

- Neutrinos and their oscillations play deciding role in SNe
- Intriguing features in 3D simulations, explosion not yet settled
- IceCube provided 99.7% "SN availability"
- IceCube most precise instrument for close SNe
- will remain to be competitive in future
- e much to learn from combination of measurements

Neutrino physics: Absolute v mass Mass sequence Matter and collective oscillations Majorana vs Dirac neutrinos Sterile neutrinos and axions

Supernova physics:

Pre-supernova evolution & progenitor structure Neutronization & neutrino trapping Shocks, turbulence, convective transport (SASI, LESA) EOS, neutron star, phase transition, nucleosynthesis Accretion, explosion cooling, black hole formation ...