Varying fundamental constants and particle physics

Rikard Enberg Tanumoy Mandal

Uppsala Seminar, 2017-04-06

UPPSALA UNIVERSITET

Overview

- The general idea
- Old idea: Varying electromagnetic coupling
- Particle physics \rightarrow new scalar particles
- Generalization to $SU(3) \times SU(2) \times U(1)$
- Generalization to Yukawa couplings
- Collider signatures

All results in this talk are based on work with Ulf Danielsson, Gunnar Ingelman, Tanumoy Mandal: arXiv:1601.00624 (Nucl. Phys. B, in press) and a forthcoming paper

Free parameters of the SM

Fundamental constant: *a parameter that cannot be explained by the theory* (even in principle)

How many parameters are there in the Standard Model?

- 19: Yukawas, gauge couplings, CKM, theta, Higgs
- 26: If we include neutrino mixing and masses
- 27: If we include the cosmological constant
- 31–37: If we add cosmological standard model [See e.g. Tegmark et al., PRD 73 (2006) 023505]

And then there are c, \hbar , G, k_B , etc. ...

Recommended reading: R.N. Cahn, Rev. Mod. Phys. **68** (1996) 951-960 M.J. Duff, arXiv:1412.2040

Parameters of the Standard Model			
Symbol	Description	Renormalization scheme (point)	Value
m _e	Electron mass		511 keV
m _μ	Muon mass		105.7 MeV
m _τ	Tau mass		1.78 GeV
m _u	Up quark mass	$\mu_{\overline{MS}} = 2 \text{ GeV}$	1.9 MeV
m _d	Down quark mass	$\mu_{\overline{\text{MS}}} = 2 \text{ GeV}$	4.4 MeV
m _s	Strange quark mass	μ _{MS} = 2 GeV	87 MeV
m _c	Charm quark mass	$\mu_{\overline{\text{MS}}} = m_{\text{c}}$	1.32 GeV
m _b	Bottom quark mass	$\mu_{\overline{\text{MS}}} = m_{\text{b}}$	4.24 GeV
m _t	Top quark mass	On-shell scheme	172.7 GeV
<i>θ</i> ₁₂	CKM 12-mixing angle		13.1°
θ ₂₃	CKM 23-mixing angle		2.4°
θ ₁₃	CKM 13-mixing angle		0.2°
δ	CKM CP-violating Phase		0.995
<i>g</i> ₁ or <i>g</i> ′	U(1) gauge coupling	$\mu_{\overline{MS}} = m_Z$	0.357
<i>g</i> ₂ or <i>g</i>	SU(2) gauge coupling	$\mu_{\overline{\text{MS}}} = m_Z$	0.652
g_3 or g_s	SU(3) gauge coupling	$\mu_{\overline{\text{MS}}} = m_Z$	1.221
<i>H</i> _{QCD}	QCD vacuum angle		~0
v	Higgs vacuum expectation value		246 GeV
<i>m</i> _H	Higgs mass		125.36 ±0.41 GeV (tentative)

4

What are the fundamental constants and what are just units?

- There's a debate in the literature about what are the fundamental constants, and how many are there.
 [e.g. Duff, Okun. Veneziano, arXiv:physics/0110060]
- Michael Duff in particular argues that only dimensionless constants are fundamental.
 Dimensionful constants are just unit conversions (Fathoms and nautical miles)

speed of light = 1 lightyear/year

 "Asking whether c has varied over cosmic history ... is like asking whether the number of litres to the gallon has varied" [M.J. Duff, arXiv:1412.2040]

Varying coupling constants?

- Coupling "constants" vary with energy scales as given by the renormalization group: this is normal QFT and not what I mean here
- But they might also vary as functions of $x^{\mu} = (t, x, y, z)$
- Consistent if they are given by **dynamical fields**
- Old idea (Dirac 1937, Jordan 1937, ...). Bekenstein proposed a simple consistent model in 1982
- Varying fundamental constants have been explored in various contexts in cosmology
- Review: J.-P. Uzan, "Varying Constants, Gravitation and Cosmology", Living Rev. Relativity 14 (2011) 2

String theory

In string theory there are no free parameters — all parameters are set by VEVs of scalar fields
Find correct compactification → constants predicted
These scalar fields are called *moduli fields*

The modulus field that sets the string coupling g_s is called the *dilaton* S. In e.g. heterotic string theory

$$S = V_6 e^{-2\phi} + ia$$

where V_6 depends on the compactification, a is an axion. The string coupling is then $g_s = e^{\phi}$

String theory

The point is that

All fundamental constants are VEVs of moduli fields

These constants are not freely adjustable – they are dynamical parameters \rightarrow can be calc. from a potential

If these scalars have eqs. of motion that allow the VEVs to vary over spacetime \rightarrow constants can vary

If VEVs frozen at some scale, constants are constant below that scale but may vary at higher scales

Couplings as fields

Lorentz invariance \rightarrow the fields must be scalars

Very natural idea: once you find the correct theory (e.g. a string compactification)

 \rightarrow All parameters are predicted

- All parameters are locked at their values as long as the scalar field is at its minimum
- If the field is excited, the parameters are not fixed
- Alternatively, scalar particles appear

Particle physics

Many concepts have previously been borrowed from string theory and used in particle physics:

- Supersymmetry
- Extra dimensions
- Branes
- •

Now we would like to borrow the concept of moduli fields and dynamical couplings

But we are not doing string phenomenology here!

Bounds on coupling variations

Bounds on $\Delta \alpha / \alpha$ from:

- Big Bang Nucleosynthesis
- Cosmic Microwave Background
- Oklo reactor [natural reactor 1.8 Gyr ago in Gabon] (Neutron capture cross section on ¹⁴⁹Sm very sensitive to approx. cancellation of EM and strong force)
- Atomic clocks
- Quasar spectra
- Meteorite dating
- Stars, neutron stars, ...

Bounds on coupling variations

All these bounds put limits on models where the parameters vary on a low energy scale: the scalar fields are massless or very light

With dynamical fields on a high mass scale, the variations would only appear at high energies

At lower energies, the parameter values are locked at the observed values

The Bekenstein model for a varying α_{EM}

In 1982 Jacob Bekenstein proposed the simplest consistent model for a varying α_{EM} , where

$$e(x) = e_0 \varepsilon(x)$$

 $\epsilon(x)$ replaces the constant coupling (we extract the vev e_0) e_0 is the vev = the standard value for the electric charge

 $\epsilon(x)$ is a scalar field with kinetic term

$$\frac{1}{2} \frac{\Lambda^2}{\varepsilon^2} (\partial_\mu \varepsilon)^2$$

This does not look like what we are used to for scalars!

- Invariant under rescaling of ε(x)
- Typically what kinetic terms for moduli look like in string theory

The Bekenstein model for a varying α_{EM}

In Bekenstein's model, the EM field strength tensor is modified to $\hat{\pi}$ 1 [0 (1)]

$$\widehat{F}_{\mu\nu} = \frac{1}{\varepsilon} \left[\partial_{\mu} (\varepsilon A_{\nu}) - \partial_{\nu} (\varepsilon A_{\mu}) \right]$$

with gauge transformation $\varepsilon A_{\mu}
ightarrow \varepsilon A_{\mu} + \partial_{\mu} \alpha(x)$

 $\varepsilon(\mathbf{x})$ is dimensionless with non-standard kinetic term. Define $\varepsilon = e^{\varphi}$ with $\varphi(x) = \ln \frac{e}{e_0}$ and rescaling $\varphi = \phi/\Lambda$ and expand $\varepsilon = e^{\varphi} \simeq 1 + \varphi = 1 + \phi/\Lambda$

 $rac{1}{2}(\partial_\mu\phi)^2$

so that we get the canonical kinetic term with standard mass dimension of $\phi(x)$:

The Bekenstein model for a varying α_{EM}

In effect, everywhere: $eA_{\mu} \rightarrow e_0 \varepsilon A_{\mu} \simeq e_0 (1 + \phi/\Lambda) A_{\mu}$

For example $\hat{D}_{\mu} = \partial_{\mu} - ie_0 Q A_{\mu} - \frac{ie_0 Q}{\Lambda} \phi A_{\mu}$ This leads to:

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} (\partial_{\mu}\phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac{1}{\Lambda} \partial_{\mu}\phi A_{\nu} F^{\mu\nu} + \frac{e_0 Q}{\Lambda} \phi \overline{\psi} \gamma^{\mu} \psi A_{\mu}$$

where we added a mass term for the scalar.

Here everything is rewritten in terms of the ordinary gauge field $F_{\mu\nu}$ and EM charge e₀ which does not vary

Variation swapped for the existence of a scalar particle! Scalar is inserted into every QED vertex with a photon¹⁵

The Bekenstein model for a varying α_{EM}

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 - \left(\frac{1}{\Lambda} \partial_{\mu} \phi A_{\nu} F^{\mu\nu}\right) + \left(\frac{e_0 Q}{\Lambda} \phi \overline{\psi} \gamma^{\mu} \psi A_{\mu}\right)$$

Scalar is inserted into every QED vertex with a photon!

 $\overline{\mathsf{f}}$

What are the interactions?

 ϕ

Alternative form of the model

The funny-looking interaction term can be integrated by parts:

$$-\frac{1}{\Lambda}\partial_{\mu}\phi A_{\nu}F^{\mu\nu} \rightarrow -\frac{1}{\Lambda}\phi A_{\nu}\partial_{\mu}F^{\mu\nu} + \frac{1}{2\Lambda}\phi F_{\mu\nu}F^{\mu\nu}$$

Note the Maxwell eq. $\partial_{\mu}F^{\mu\nu} = j^{\nu} = e_{0}\bar{\psi}\gamma^{\nu}\psi$
 \rightarrow Use operator identity to eliminate $\frac{e_{0}Q}{\Lambda}\phi \overline{\psi}\gamma^{\mu}\psi A_{\mu}$

- ${\label{eq:starses}$ Equivalent model with $\,\phi F^2$ interaction and no direct coupling of the scalar to fermions
- → Looks more like a "normal" new scalar

But is this the same theory?

- It's straightforward to show using Feynman diagrams that any amplitudes squared with external on-shell photons are identical in the two versions of the model
- Less clear what happens with loops
- Operator identity (e.o.m.) $\partial_{\mu}F^{\mu\nu} = j^{\nu} = e_0\bar{\psi}\gamma^{\nu}\psi$ means you get theories that may have different forms and different fields, but give same S-matrix elements, at least at leading order (e.g. Politzer 1980, Arzt 1995)
 - \rightarrow field redefinition invariance of path integral

Summary & outlook

- Dynamical couplings given by fields with no free parameters is a natural idea in UV completions
- Leads to the existence of (potentially) many new scalar fields
- Interesting phenomenology
- How light can they be?
- Cosmology? Astrophysics? Phase transitions?