

Hardware tracking for the ATLAS trigger at the High Luminosity LHC and BSM searches with tau leptons in the final state

Mikael Mårtensson

Supervisors: Richard Brenner, Arnaud Ferrari, and Elin Bergeås Kuutmann

Outline

- Introduction to the ATLAS experiment
- Part 1: BSM with tau leptons in the final state
 - LQ3LQ3 \rightarrow btbt \rightarrow bt_{had}bt_{had}
- Part 2: Hardware tracking for the ATLAS trigger at the HL-LHC
 - The High-Luminosity LHC
 - The ATLAS trigger at the HL-LHC
 - Hardware tracking for the trigger (HTT)
 - Hough transform FPGA implementation
 - Simulation study: Comparison of pattern matching using Associative Memory and the Hough transform

- Located at the Large Hadron Collider (LHC), CERN, Geneva.
- · General-purpose particle physics experiment.
- Using mainly proton-proton collisions to study the fundamental forces and the structure of matter:
 - Studies the properties of the Standard Model.
 - Searches for physics beyond.

The ATLAS detector

M. Mårtensson

Part 1

BSM searches with tau leptons in the final state

• 3rd gen leptoquark: LQLQ \rightarrow btbt

Theory and motivation

- 3rd generation leptoquark, linking lepton and quark sectors.
- Several extensions of the standard model including technicolor, Pati-Salam, and *SU*(5) GUTs.
- $B \rightarrow \tau v$ and $B \rightarrow D(^*)\tau v$ decay rates higher then expected from the Standard Model.
 - Provides potential explanation of 3 σ disagreement seen by BaBar, LHCb, and Belle.

M. Mårtensson

- Reworking the HH \rightarrow bbtt analysis.
 - Pedro and Petar from Uppsala are involved. (Pedro also in LQ3)
- Pair as LQ = $b\tau$ instead of H = bb and H = $\tau\tau$.
- Preselection
 - Single-tau and di-tau triggers.
 - 2 medium taus of opposite sign and 2 or more central jets.
 - $p_{\rm T}^{\rm T} > 40, 30 \,{\rm GeV}, \, p_{\rm T}^{\rm j} > 45, 20 \,{\rm GeV}, \,{\rm and} \, p_{\rm T}^{b_0} > 80 \,{\rm GeV}$
 - $m_{\rm MMC} > 0 \,{\rm GeV}$
- I've been looking at strategies of pairing bτ when the tau leptons decay hadronically.

Pairing strategies

- Two ways of pairing jets and taus into LQs:
 - $(j_0 \tau_0, j_1 \tau_1)$ or $(j_0 \tau_1, j_1 \tau_0)$
- I've looked at six pairing strategies:
 - 1 Maximize the sum of $\Delta \phi$ between the jets and taus. 2 Maximize the sum of ΔR between the jets and taus.

•
$$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$

- **3** Maximize the $\Delta \phi$ between one jet and one tau.
- 4 Maximize the ΔR between one jet and one tau.
- 5 Minimize the mass-difference of the two LQs.
- 6 Minimize the p_{T} -difference of the two LQs.

Pairing efficiency

M. Mårtensson

• Summary

- Search for 3rd generation leptoquarks decaying to $b\tau$.
- I have looked at ways to reconstruct the leptoquark by pairing *b*-jets and τ leptons.
- Minimizing the mass difference is the best one for low mass.
- Outlook
 - Refine cuts, e.g. τ lepton and jet p_{T} .
 - Move to multi-variate analysis (boosted decision trees).
 - Aiming for publication before Christmas.

Part 2

Hardware tracking for the ATLAS trigger at the HL-LHC

- The High-Luminosity LHC
- The ATLAS trigger at the HL-LHC
- Hardware tracking for the trigger (HTT)
- Hough transform FPGA implementation
- Simulation study: Comparison of AM and Hough

The High-Luminosity LHC

- An upgraded version of LHC scheduled to start operation in 2026.
- Physics goals include:
 - Studying the higgs boson, e.g. higgs self-coupling.
 - Studying the quark-gluon plasma.
 - Search for new forces and particles, e.g. Supersymmetry.
- Increase the rate of proton-proton collisions.
- Luminosity increased to 7.5×10^{34} cm⁻² s⁻¹, a factor of 5-7 compared to the LHC baseline design.

Trigger requirement

=> If we are forced to increase the trigger p_T threshold to lower the rate, we will not benefit from the higher luminosity!

Further reading: LHCC-I-023, LoI for the Phase-II Upgrade

M. Mårtensson

ATLAS at the HL-LHC

- ATLAS needs to maintain a low trigger p_T threshold to not loose acceptance for interesting processes.
- Introduce fast regional Hardware Tracking for the Trigger (rHTT) with near-offline resolution.
- Using the strip and pixel detectors of the Inner Tracker (ITk).

2017-09-28

M. Mårtensson

Baseline trigger architecture

- Single-level L0-only mode.
- L0-trigger: muon chamber and EM calorimeter.
- Full detector readout at 1 MHz (max).
- HTT runs as part of the Event Filter.

M. Mårtensson

Evolved trigger architecture

- LOA initiates data storage in front-end ASICs.
- 2-4 MHz L0A.
- R3: regional readout request (10% of ITk volume).
- L1A initiates readout of strips + outer pixels.
- L1 rate = 600–800 kHz (L1A) + 400–200 kHz (10 % of L0A).

M. Mårtensson

2017-09-28

13/28

rHTT overview

- Using 8 detector layers of which 1 or 2 are outer pixel layers.
- Rols of $\Delta \eta = 0.2$ by $\Delta \phi = 0.2$.
- Hit filtering in Associative Memory (AM) chips.
 - Alternatively in Field-Programmable Gate Arrays (FPGAs) using the Hough transform.
 - AM requires custom made ASICs while the Hough transform can be implemented in commercial FPGAs.
- Track fitting in FPGA.

M. Mårtensson

AM pattern matching

- AM chips match input data to pre-defined patterns.
- Pixels and strips are combined to coarser-resolution super-strips.
- AMs containing patterns of super-strip hits from simulated tracks.
- 1M patterns per Rol.
- *Don't care bits* and *wildcard layers* can combine similar patterns and account for missing hits.
- Patterns trained using 30M simulated tracks from muons:
 - 1, 2, or $4 < p_{\rm T} < 400 \,{\rm GeV}$.
 - $|d_0| < 2 \,\mathrm{mm}.$
 - Flat in $1/p_{T}$, η , ϕ , z_{0} , and d_{0} .
- Hits are associated to matched patterns in an external FPGA.

Hough transform

M. Mårtensson

- Alternative to pattern matching using AM. Parallel study.
- Parametrize curves and "accumulate" possible track parameters for all hits: $\frac{qA}{\rho_{T}} = \frac{\phi_{0}-\varphi}{r}$.

• Background rejection improved by 70% by slicing up in z_0 .

16/28

Hough transform in FPGA

- Implemented the Hough transform in an FPGA using OpenCl.
- Using a Terasic DE1-SoC board with a Cyclone V SoC.
- Host code running on on-chip arm32 processor.
 - Inputs hit coordinates to the FPGA.
 - Gets track parameters from the FGPA.
- FPGA kernel performs the Hough transform.
- The accumulator is a 2D histogram.
- This study:
 - 32 bins in (qA)/p_T.
 - 1 to 1024 bins in φ₀.
- Bounds: $p_{\rm T} > 4 \,{\rm GeV}, \, 0.2 < \phi_0 < 0.5.$
- Each bin consists of 8-bits, 1 bit for each detector layer.

Piped vs. parallel kernel

• Cannot fit a fully parallel kernel when reading in all hit coordinates to local memory. Can I pipe it instead to study performance?

Piped kernel

 ϕ_0 bin = parallel thread number

M. Mårtensson

Execution time

- Single muons embedded in 200 minimum bias events.
- Piped version (with 12 splits in *z*₀):
 - Execution time increases linearly with number of bins in ϕ_0 .
 - 120 μs (170 μs) overhead. Read/write from/to global memory?
 - $6.2 \,\mu\text{s/bin}_{\phi_0}$ (78.7 $\mu\text{s/bin} \approx 6.5 \,\mu\text{s/bin}_{\phi_0} \times 12 \,\text{bin}_{z_0}$). This is the actual computation.
 - Some large error bars due to 1-2 events taking a long time. FPGA hiccups?
- Parallel version:
 - Cannot fit more than 12 parallel bins in ϕ_0 in this small FPGA.
 - Almost flat execution time of 100 µs.
 - Local memory replicated 4 times
 > read/write clashes gives 6 µs steps.

Simulation comparing AM and Hough

- · Single muons generated in Geant4:
 - $p_{\rm T} > 4 \,{\rm GeV}, |z_0| < 150 \,{\rm mm}, \,{\rm and} \, |d_0| < 2 \,{\rm mm}.$
 - Uniform distributions in $1/p_T$, η_0 , ϕ_0 , and d_0 ; gaussian in z_0 .
- Minimum bias generated with Pythia8 using SoftQCD:inelastic at 14 TeV.
- Detector simulation in Geant4 with the FTFP_BERT physics list.
- "Digitization" implemented in C++:
 - Overlay single muon events with 0, 40, 70, 110, 140, 170, 200, 230, and 260 minimum bias events.
 - The total energy deposited in each pixel/strip is calculated and a threshold corresponding to 1 fC is applied.
 - Clusters with 4 or more connected strips/pixels in ϕ are rejected.
 - If an event has muon hits outside the RoI, it is rejected.
- We are using the outer pixel layer and 7 strip layers.

Number of hit combinations

- Combinations: $\sum_{g} \left(\prod_{l=1}^{8} n_{g,l} \right)$; $n_{g,l}$ is the number of hits in group/pattern g, layer I.
- Right plot shows hit combinations at pile-up 200.
- Left plot shows hit combinations as a function of #hits in the RoI:
 - Circles/squares show the mean. The crosses show the [0.25, 0.50, 0.75] quantiles.
 - The number of hit combinations grow similarly for both methods.
- Hough has more hit combinations than AM.

M. Mårtensson

2017-09-28

21/28

Muon track finding efficiency

- A muon is considered found if 6 or more hits from the primary muon is found.
- Left plot shows efficiency vs. number of hits, right shows vs. p_T at PU 200.
- The Hough transform i tuned to provide similar efficiency as AM.
- · Flat in efficiency vs. number of hits in the Rol.
- Hough slightly worse at low p_{T} .

M. Mårtensson

Hits per layer

- Shown for single muons overlayed by 200 minimum bias events.
- None of the methods show bias towards any particular layer.

M. Mårtensson

2017-09-28

23 / 28

Primary muon hits found

- Shown for single muons overlayed by 200 minimum bias events.
- The AM pattern matching finds more of the primary muon hits than the Hough transform in 40% of the events.
- The opposite is true in only 5% of the events.

M. Mårtensson

Result when adding addition material

- 50 % more service material.
- The dotted (dashed) line shows the average of the nominal AM (Hough) result.
- The AM methods shows a small overall increase while the Hough transform shows an overall decrease.
- Hough shows a small decrease at low $p_{\rm T}$, while AM has an increase.
- However: note the low statistics!

M. Mårtensson

Results with module inefficiency

- Randomly turning of 5 % and 10 % of the modules.
- The dotted (dashed) line shows the average of the nominal AM (Hough) result.
- Dropping 5 % (10 %) reduces the efficiency to approximately 95 % (87 %).
- However: note the low statistics!

M. Mårtensson

Summary and outlook

- Summary
 - The HL-LHC will increase the luminosity by a factor of 5-7 compared to the current run.
 - ATLAS will introduce regional hardware tracking for the trigger to help maintain a low trigger p_{T} threshold.
 - First stage of the HTT is hit filtering using AM or Hough.
 - Hough transform implemented in FPGA using OpenCL
 - Execution time on the order of $6 \, \mu s$.
 - Simulation study comparing AM pattern matching and Hough transform
 - AM pattern matching overall better.
 - The Hough transform can be implemented in commercially available FPGAs.
- Outlook
 - · Article comparing AM and Hough submitted to JINST
 - Hardware demonstrator

M. Mårtensson

2017-09-28

27 / 28

- Publications on track trigger work:
 - Proceeding for Vertex 2016 (poster): PoS(Vertex 2016)069
 - Proceeding for CTD/WIT 2017 (talk): EPJ Web of Conferences 150, 00008 (2017)
 - Article submitted to JINST: arXiv:1709.01034

Questions?