

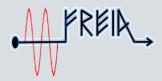
FREIA Facility for Research Instrumentation and Accelerator Development

Roger Ruber for the FREIA team

17 June 2013, Uppsala
TIARA Workshop on RF Power Generation for Accelerators

Accelerator Physics at Uppsala University

Concentrating on microwave power (RF) and instrumentation ...


- Cyclotron (since 1948)
- CELSIUS storage & accelerator ring (1984 2006)
- Electron-positron linear collider development
 - CERN projects CTF3/CLIC & NorduCLIC
 - Two-beam Test Stand & RF breakdown issues
 - EU FP6-EuroTeV, FP7-EuCARD, FP7-TIARA
- Free electron laser development
 - FLASH Optical Replica Synthesizer,
 - XFFL Laser Heater
 - Stockholm-Uppsala FEL Centrum
- European Spallation Source development
 - microwave power systems
 - accelerating cavity & cryostat prototyping
 - cryomodule series acceptance testing

Responsibility for ESS Accelerator

1) Contribution to the technical design & construction effort

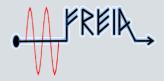
- design concept spoke accelerating cavity power source
- design concept radio-frequency (RF) power distribution
- survey test stand infrastructure and requirements
- study of upgrade scenarios RF systems for ESS power upgrade

2) Development power station for spoke cavities

- soak test with water cooled load, then accelerating cavity, incl. controls
- collaboration with industry to develop vacuum tube and solid-state based prototypes

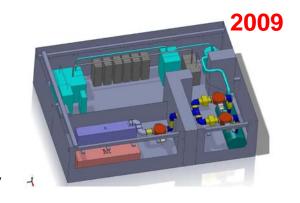
3) System test, power station with spoke cavity and cryostat-module

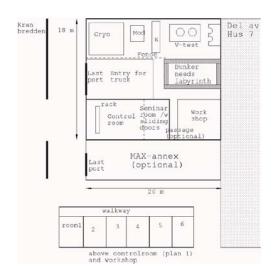
- fully dressed prototype cavity (in test cryostat)
- complete prototype module (2 spoke cavities)

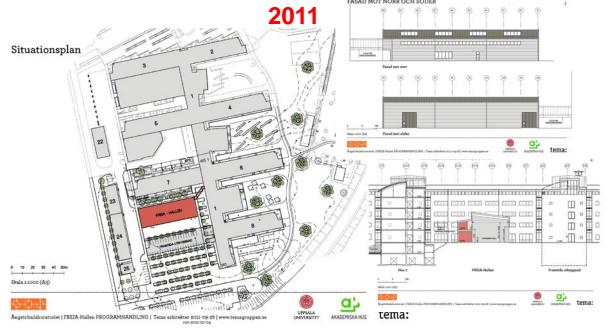

4) Acceptance test cryostat-modules (proposal submitted)

for all final modules before installation

Test Stand Matrix		f	Р	prototype				series			
				low power		high power		low power		high power	
		[MHz]	[kW]	where	when	where	when	where	when	where	when
P0	Cavities										
	ion source			LNS		LNS				on site	
	LEBT buncher	352	10	LNS?		LNS ?				on site	
	RFQ	352	1000	CEA		CEA				on site	
	MEBT			ESS-B?		ESS-B?				on site	
	DTL	352	2100	LNL		CERH (Lina	c4)			on site	
	double spoke	352	240	IPNO		UU	2014/5	??			
	medium beta	704	500	CEA		CEA		DESY ?			
	high beta	704	900	CEA		CEA		DESY ?			
P1	Couplers										
	double spoke	352	800	IPNO		CEA		55		??	
	medium beta	704	650	CEA ?		CEA		??		??	
	high beta	704	1200	CEA		CEA		55		55	
		1									
P2	RF System										
	modulator		5600			ESS				ESS	
	NC linac	352	2800			ESS				ESS	
	double spoke	352	300		-	UU	2014			ESS	
	medium beta	704	600			ESS	2014			ESS	
	high beta	104	1200			ESS				ESS	
	riigii beta		1200	-		1 233				233	
P3	Cryomodule										
	double spoke	352	2x 300	IPNO		UU	2015/6	IPNO	(UU	2017/8
	medium beta	704	4x650	CEA	-	CEA		CEA/ESS		ESS	
	high beta	704	4x1200					CEA/ESS		ESS	




Why FREIA?

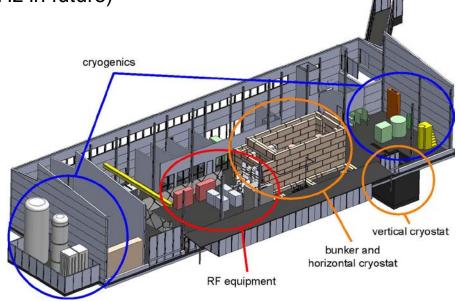

Several circumstances

- test stand needs large experiment space and bunker
- university's helium liquefier in need of replacement
 Decision on new construction at Ångström (2010)
- funding support from KAWS, government and university

2010

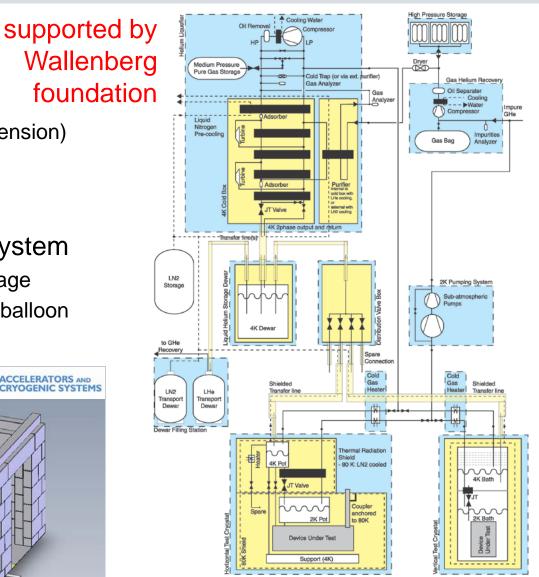

Construction Progress

What FREIA?

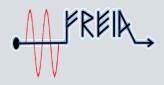


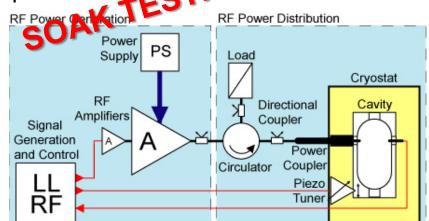
Facility for Research Instrumentation and Accelerator Development

- General Infrastructure
 - liquid helium, nitrogen production & distribution
 - specialized workshop, control room
 - concrete bunkers
- Accelerator & General Test Stands
 - horizontal test cryostat (vertical in future)
 - power sources: 352 MHz (704 MHz, 12 GHz in future)
- Neutron Generator
 - neutron tomography, detector tests
 - student exercises and projects

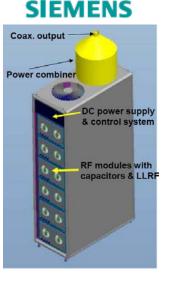


FREIA Cryogenic Centre


- Multiple users
 - external users (dewars)
 - horizontal test cryostat
 - vertical test cryostat (future extension)
- Liquid nitrogen
 - 20 m3 tank
- Helium liquefier & recovery system
 - 140 l/h peak at 4 K, 2000 l storage
 - 80 m3/h recovery, 100 m3 gas balloon
 - ~8 g/s, 80 W peak load at 2 K


FREIA RF Power Station

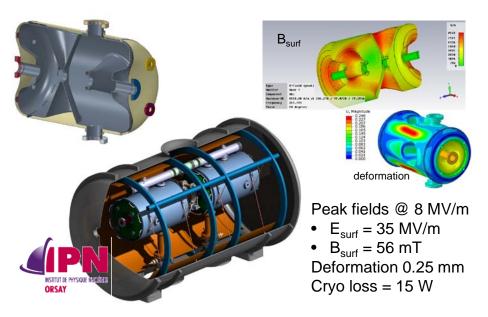
ESS pre-series #1


- 352 MHz, 400 kW pulsed
 - FREIA 2pc
 - ESS linac 28pc
- FREIA design based on TH595
 - -tender >350 kW (2012 design)
 - allowed alternative solutions
 - 12 offers: tetrode, IOT, solid-state

– TH595 solution most competitive

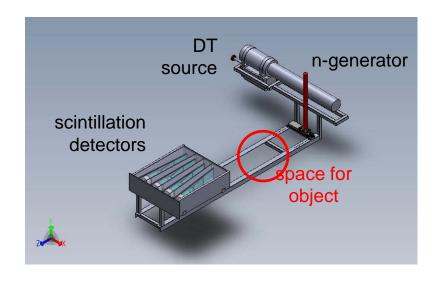
Solid-state R&D station

- 352 MHz, 400 kW pulsed
 - -FREIA 1pc
- Commercial design
 - 1 kW transistors
 - -8 kW modules
 - coaxial combiner

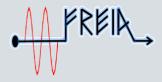

Approved Projects

ESS Accelerator

High power system test of source, spoke cavity and cryostat-module


- high power soak testing of power source, controls, amplitude and phase stability with accelerating cavity
- test cavity tuning system, dynamic load, electron emission and multipactoring

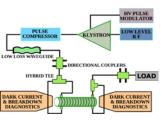
Neutron Generator


Access to neutrons

- neutron tomography and detector tests
- student exercises and projects
- physics experiments in combination with solid-state based gamma-detector
 - nuclear fission
 - activation analysis

Projects under Discussion

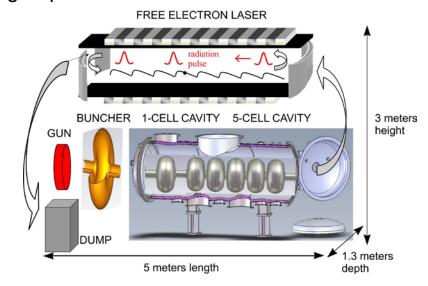



SIGURD

Set-up and Instrumentation for GHz Research and Development

High Gradient RF research

- compact high gradient accelerators (medical, FEL, particle collider)
- vacuum breakdown pattern, rate, relation to gradient, memory effects
- pulse heating, plasma formation, dark currents, breakdown currents
- post-mortem analysis of structures in SEM at Microstructure Lab
- link to theory developments (Helsinki University)



THz FEL

 THz radiation non-ionizing, strongly absorbed by water

Biology and Material Science

- imaging & spectroscopy for biological tissues, proteins, molecular and material science
- extends existing efforts by the Microwave group

Spin-off from Uppsala Accelerator R&D

- Scanditronix
 - major supplier
 - cyclotrons 1970-80's
 - PETs 1980's
- GE Medical Systems
 PET and cyclotrons
 - former Scanditronix

- IBA Dosimetry
 - former Scanditronix Wellhöfer

- ScandiNova
 - high voltage pulse modulators

- Scanditronix Magnets
 - magnets

physics tools education, research, industry

Summary

- FREIA is building a bridge between fundamental scientific research, applied physics and industry
- FREIA laboratory enables
 - accelerator R&D for medical and research purposes,
 - construction of ESS for biology and material science,
 - enlarged Cryo Centre
 - enlarged R&D space

 FREIA opens new opportunities for unique scientific projects in Uppsala

Thanks to university, faculty, physics & astronomy department and the FREIA team.

