Contribution ID: 1

Decay spectroscopy of N ~ Z nuclei in the vicinity of 100Sn

Friday, 20 October 2017 14:40 (20 minutes)

(On behalf of the EURICA collaboration)

The structure of magic nuclei far away from stability provides vital information on modern shell models. In particular, the doubly magic 100 Sn and proton-rich nuclei in its vicinity contains many topics of interest: the limit of proton binding in this mass region, the robustness of the N=Z=50 shell closures, and isospin symmetry among many others. Experimental properties of these nuclei are also relevant for precise predictions of the end stages of the rapid proton-capture process of nuclear astrophysics.

A decay spectroscopy experiment on 100 Sn and other $N\sim Z\sim 50$ nuclei was performed at RIKEN Nishina Center, where a 345-MeV/u 124 Xe beam was fragmented on a 9 Be target. The isotopes of interest were identified and implanted on a set of Si detectors, which measured the positrons and protons from subsequent β decays. γ rays emitted from excited states were measured by HPGe detectors placed around the implantation detectors.

A summary of new and more precise experimental results will be presented. Highlights include the discovery of new isotopes, β -decay properties of the heaviest bound N = Z - 1 nuclei, an update on the superallowed Gamow-Teller decay of ¹⁰⁰Sn, and the structure of ⁹⁶Cd.

Primary author: Dr PARK, Joochun (Lunds universitet)

Presenter: Dr PARK, Joochun (Lunds universitet)

Track Classification: SFS - KF