

# Introduction of PAL and Activities in Superconducting RF







@RREIA, Uppsala University September 11, 2017

## **Topics**

Introduction of PAL

Experience and Activities in SRF



## What's PAL ?

- Pohang Accelerator Laboratory is belonged to POSTECH (Pohang University of Science & Technology). Private Institute supported by Korean government.
- POSTECH, founded by Pohang Steel Company (POSCO) in 1986
- PAL operates
  - PLS-II (3<sup>rd</sup> generation synchrotron): superconducting RF
  - PAL-XFEL (4<sup>th</sup> Gen. Syn.): normal conducting RF
- Pohang is one of industrial & Science cities in Korea.



## Younguk Sohn

#### (孫 永旭, 손영욱)

- Nuclear power plant for 2 years
- In accelerator for 26 years
  - Magnet (especially superconducting) design
  - Beamline (synchrotron light) design
  - Superconducting system

### **Bird View of PAL Site**



### **PAL-XFEL Parameters**



| Main parameters                                                            |                                  | Undulator Line                 | HX1                             | SX1      |
|----------------------------------------------------------------------------|----------------------------------|--------------------------------|---------------------------------|----------|
| e <sup>-</sup> Energy                                                      | 10 GeV                           | Wavelength [nm]                | <mark>0.1</mark> ~ 0.6          | 1 ~ 4.5  |
| e <sup>-</sup> Bunch charge 20-200 pC                                      |                                  | Beam Energy [GeV]              | 4 ~ 10                          | 3.15     |
| Slice emittance0.5 mm mradRepetition rate60 HzPulse duration10 fs - 100 fs | Wavelength Tuning<br>[nm]        | 0.6 ~ 0.1<br>(energy or gap)   | 4.5 ~ 3 (energy)<br>3 ~ 1 (gap) |          |
| Peak current                                                               | 3 kA                             | Undulator Type                 | Planar, out-vac.                | Planar   |
| SX line switching                                                          | DC (Phase-1)<br>Kicker (Phase-2) | Undulator<br>Period / Gap [mm] | 26 / 8.3                        | 35 / 8.3 |

## **Milestone PAL-XFEL**

- 2002 ~ Studying and persuading government
- Apr. 2011 PAL-XFEL project started
- Jun. 2012 Ground-breaking
- Apr. 2016 Commissioning started
- Jun. 2017 User-service started



- ◆ 14 Jun. 2016 First SASE lasing at 0.5 nm
- ◆ 28 Oct. 2016 Lasing at 0.15 nm
- 27 Nov. 2016 Saturation of 0.15 nm
- ◆ 16 Mar. 2017 Saturation of 0.1 nm: Goal

#### Klystron Gallery - PAL-XFEL



IPAC2017, COPENHAGEN, DENMARK, 2017 MAY 14-19

#### Linac Tunnel - PAL-XFEL



IPAC2017, COPENHAGEN, DENMARK, 2017 MAY 14-19

#### **Undulator Hall - PAL-XFEL**



IPAC2017, COPENHAGEN, DENMARK, 2017 MAY 14-19

## Storage Ring, PLS-II

| Parameters                            | Values       |  |
|---------------------------------------|--------------|--|
| Energy [GeV]                          | 3            |  |
| Current [mA]                          | 400          |  |
| Emittance [nm-rad]                    | 5.9          |  |
| Harmonic number                       | 470          |  |
| No. of Insertion Devices              | 20           |  |
| Electron energy loss / turn [KeV]     | 1242         |  |
| RF frequency [MHz]                    | 499.973      |  |
| Number of RF cavity                   | 3            |  |
| Accelerating Voltage [MV]             | 4.5          |  |
| RF Voltage per cavity [MV]            | 1.5 (5 MV/m) |  |
| Klystron amplifier [kW/each]          | 300          |  |
| Cryogenic Cooling Capacity @4.5 K [w] | 700          |  |

X PLS-II has 32 beamlines (16 ID and 16 BM)

## LINAC (3 GeV) as Injector



- Thermionic Electron Gun
- 16 Pulse Modulators (200MW, 7.5µs)
- 16 Klystrons (80 MW, 4µs)
- 15 Energy Doublers (gain=1.5)
- 46 Accelerating Sections

#### **Injector LINAC**

- Length = 170m
- 3.0 GeV, full energy injection
- 2,856 MHz (S-band)
- 10Hz, 1.5 ns, 1Å pulsed beam
- Norm. emmittance : 150µmrad



## **PLS-II Storage Ring**



- Beam Energy 3.0GeV
- Beam Current 400mA
- Lattice DBA
- Superperiods 12
- Emittance 5.8 nm·rad
- Tune 15.37 / 9.15
- RF Frequency 499.97 MHz
- Circumference 281 n
- 281 m





### **User Statistics**

1366 experiments 5234 by users



# Introduction Superconducting RF System in PLS-II

## 3 SRF Modules @Tunnel





CESR-3 Cryomodule, Designed by Cornell University

# PLS-II, SRF 500 MHz Cavities

- Orbit stability @ high beam current to 400 mA
- High beam power W/ 20 insertion devices

Higher synchrotron radiation brightness,
order of 2 (100 times) compared to PLS

PLS-II operated with 380mA topup mode, But, **nominal is 400 mA.** 

## **Specifications of SRF System**

| Specification                       |                                                                             |  |
|-------------------------------------|-----------------------------------------------------------------------------|--|
| Resonant frequency [MHz]            | 499.973                                                                     |  |
| R/Q [Ω]                             | 89                                                                          |  |
| Q <sub>0</sub>                      | >1×10 <sup>9</sup> @ Vacc $\leq$ 2.0 MV (~7 MV/m)                           |  |
| Q <sub>e</sub>                      | 1.37E5 +/- 0.2E5                                                            |  |
| Frequency tuning range (step-motor) | $\pm 150$ kHz with resolution of 10 Hz                                      |  |
| Operating Temperature [K]           | 4.4                                                                         |  |
| Accelerating Voltage / Cavity [MV]  | 1.3 – 2.5 (4.5 – 8.5 MV/m)                                                  |  |
| Max. RF Power(CW) / Cavity [kW]     | 300 (operation < 200 kW)                                                    |  |
| HOM Removal                         | Ferrite Absorber                                                            |  |
| Input power coupler                 | Waveguide                                                                   |  |
| Window                              | <ul><li> 300 kW in TW cw</li><li> 150 kW SW cw at full reflection</li></ul> |  |

## **Superconducting 500 MHz RF Cavities**

**CESR** Type



### **Accelerating Voltages @ Bare Cavity**



## Q0 Degradation, VT vs HT (SAT)



% Cavity 2 was less Q0 than spec. 1.0E9 @2 MV/m

#### Input coupler and RF window



- □ Waveguide transfer line coupled via a coupling slot.
- Fixed coupling.
- Solenoid winding for magnetic field biasing to mitigate miltipacting (MP).
- Waveguide disk ceramic window.
- Each window tested to 400 kW (CW if possible, otherwise pulsed, average power is usually limited by available RF load) in traveling wave (TW) and >125 kW in SW.
- Coupling adjustability is provided by an external to the cryomodule 3-stub waveguide transformer.
- Depending on the CESR operating mode, Q<sub>ext</sub> is set to 1.5×10<sup>5</sup>, 2×10<sup>5</sup>, or 4×10<sup>5</sup>.





## Window Conditioning & Test

- 9 days (~10 hours/day) for conditioning and test of RF window at Test Stand @warm temperature
- Travelling Wave Mode; Spec.
  - 8 hours @300 kW CW
  - Max △T=29 C (<60 C)
  - Vacuum pressure: 2.9~4.9E-9 mbar, no trip (<1E-7)
- Standing Wave Mode; Spec.
  - 4 hours @150 kW CW
  - Max △T=47 C (#24), 56.5C (#25)
  - Vacuum pressure: 1.2E-8 ~ 5.9E-9 mbar, no trip

## Site Acceptance Test (SAT) @PLS-II

#### Leak Check: Cavity from atmosphere and He vessel

Spec. (@warm & cold temp.) < 2e-10 mbar l/s</p>

#### Window & cavity conditioning

- On-resonance and off-resonance
- Pulse conditioning: 1, 2, 5, 10, 20, 50 msec and CW mode
- Repetition rate: primarily 10 Hz with 1, 2, 5 Hz

#### RF Voltage (Vacc) and Q0 Measurement

- Long term operation: 2.03 MV, Q0=6.8e8 (Spec: >5.0e8)
- Maximum Vacc: 2.5 MV (8.5 MV/m), Q0=6.4e8

#### Q external: 1.65E5

<u>Tuner performance test:</u> stroke > +/- 150 kHz, resolution <10Hz

## **Site Acceptance Test**

Test-pit With radiation shield



#### Pulse-1,2,5,10,20,50 &100 msec



#### Cryomodule control system



### **Cooling with Liquid He**

~15 hours: room temp. to 4.4 k



## **Conditioning Window & Cavity**

Last 16 hours

Aug. 14, 2012



## Management, Cavity & Window Vacuum



- Partial warming-up cavity up to 40K
- Threshold pressure vacuum bursts >1 x 10<sup>9</sup> mbar

## **Partial Warmup & Cooldown**

#### Mass-Spectrometer (RGA)



### **Partial Warmup & Cooldown**

During partial warmup & cooldown with TMP operation



### 3<sup>rd</sup> Harmonic Cavity for PLS (Mar. 2004 – Dec. 2007)

#### For;

- Increase beam lifetime by lengthening e-beam bunches
- Reduce coupled-bunch instabilities from higher order mode (HOM)

## Prototype 3<sup>rd</sup> Harmonic SRF Cavity for PLS



Design/fabrication @ PAL, surface preparation @KEK, vertical test @Jlab.

First SRF Cavity developed in Korea !!

# **R&D for ILC SRF**

- Cavity (KEK-Low loss) design by K. Saito
- Design/Fabricating dies, jigs & fixtures by PAL
- Fabricating two 9-cell cavities with simple straight beam pipe
- Surface preparation and vertical test at KEK, Japan

### Fabrication of 9-cell Cavity - PAL #1 and 2





- Max. Eacc = 27.2 MV/m

### **Results of Vertical Test for 9-cell Cavity**



- 3 Measurements of Eacc
  - Average Eacc = 23.0 MV/m
  - Max. Eacc = 27.2 MV/m

# Tack !

# 감사합니다 ! (Gam-Sa hap-ni-da !)