

Cornell-BNL ERL Test Accelerator CBETA

Status & opportunities

Steve Peggs, Project Director, for the CBETA collaboration

Thanks for material created by many people:

Cornell: Adam Bartnik, David Burke, John Dobbins, Rihc Gallagher, Colwyn Gulliford, Georg Hoffstaetter, Yulin Li, Peter Quigley, Karl Smolenski.

BNL: Scott Berg, Stephen Brooks, Khianne Jackson, George Mahler, Rob Michnoff, Steven Trabocchi, Dejan Trbojevic, Joe Tuozzolo.

Jefferson Lab: Steve Benson, Dave Douglas.

Oxford: Adam Steinberg.

SLAC: Chris Mayes (ex-Cornell).

Why an ERL? Why BNL+Cornell ?

Energy Recovery – a new regime CBETA

Synchrotron: Repetitive acceleration, low repetition rate high energy, low current, relatively large beam size.

Storage ring: Occasional fills, long-time storage. Requires very low loss rates. high energy, high current, relatively large beam size.

Linac: Single pass energy limited by the length. Average_current*Energy limited by wall-plug power. moderate energy, low current, small beam size.

ERL: Linear deceleration recaptures spent beam energy. "No" wall-plug power limit on average beam current. Very low loss rates + new accelerator physics regime ! moderate energy, high currents, small beam size.

Cornell concept: Tigner 1965

A Possible Apparatus for Electron Clashing-Beam Experiments (*).

M. TIGNER

Laboratory of Nuclear Studies, Cornell University - Ithaca, N.Y.

(ricevuto il 2 Febbraio 1965)

Energy recovery needs continuous waveform RF fields

- Normal conducting high field cavities waste energy.
- Superconducting cavities used to have too low fields.

Accelerators at Cornell

- 1934 Livingston: first non-Berkeley cyclotron (2 MeV p)
- 1949 Wilson: first stored beam in synchrotron (300 MeV e)
- 1954 Wilson: first strong focusing synchrotron (1.1 GeV e)
- 1979 Cornell Electron Storage Ring CESR (up to 8 GeV)
- 1990's World's highest luminosity for a decade
- 2017 CESR operation & upgrade as light source CHESS

CESR as a storage/damping ring test facility

ERL prototyping facility (eg for proposed FEL)

CBETA!

Cornell Energy Recovery Linac: Project Definition Design Report

Cornell Energy

Recovery Linac

June 2013

CBETA

2015 DOE Nuclear Science Advisory Committee Long Range Plan Recommendation III

"We recommend a high-energy, high-luminosity polarized Electron Ion Collider as the highest priority for new facility construction following the completion of FRIB."

New York State Energy R&D Agency (NYSERDA) contract

"Successful demonstration [of CBETA] will ensure that the electric power requirements of the eRHIC design are within acceptable limits, with respect to operating costs and reuse of existing power infrastructure at BNL."

CBETA basics

CBETA layout

CBET

Much equipment & infrastructure exists — 32 M\$

Major new equipment:

- 2 splitters (electromagnets & tables)
- Halbach (permanent) magnets in return arc
- Diagnostics, power supplies etc.

Experimental hall LOE

Circumference = 70.100 m

CBET

4 key technical features ...

- 1. 4 pass up, 4 pass down, energy recovery
- 2. Superconducting RF (1.3 GHz)
- 3. Very strong focusing single aperture optics
- 4. Halbach permanent magnets

... have been individually demonstrated elsewhere, but CBETA is first to put them all together.

The optics are unique in demonstrating no-symmetry adiabatic transitions from FFAG arc to straight.

These technologies could be used in a next generation EIC, e.g. eRHIC at BNL.

CBETAX

Very strong focusing return loop:

- Momentum aperture factor of 4
- Precision, reproducibility, alignment (production/installation).
- Stability of magnetic fields in a radiation environment.
- Matching & correction of 4 simultaneous orbits & optics
- Independent path length control for all orbits.

Multi-turn ERL operation:

- Higher Order Mode damping.
- Beam Break Up limits.
- Low Level RF control and microphonics.
- ERL startup from low-power beam.

Contract parameters

Key Performance Parameters are 1-pass, with 4-pass capability fully installed.

Design parameters are stretch goals — with challenges / opportunities for post-NYSERDA collaboration

Parameter Unit		KPP	Design
Electron beam energy	MeV		150
Electron bunch charge	рС		123
Gun current	mA	1	40
Bunch repetition rate (gun)	MHz		325
RF frequency	MHz	1300	1300
Injector energy	MeV		6
RF operation mode			CW
Number of ERL turns		1	4
Energy aperture of arc		2	4

Contract scope

CBETA

BNL collaborate with Cornell University, to test & develop a 4 pass Energy Recovery Linac using a single aperture return loop with an energy acceptance factor of up to 4.

Relocate:

- Source gun with its laser system
- Injector Cryo-Module & Main Linac Cryomodule (MLC)
- High-power beam stop

Install:

- Return loop with a single aperture accepting 4 discrete energies
- Splitters to connect the arc to the MLC.

Commission & operate with 1 mA, increasing towards 40 mA.

Visible evolution

January 2017

6-cavity Main Linac Cryomodule (MLC) in non-beam test location

Miscellaneous stuff under a 30 ton crane

Spring 2017

High voltage source gun ~400 kV

Injection CryoModule 6 MeV

November 2017 — source

75mA photocathode

Translation stage to change photocathode pucks

peggs@bnl.gov

Uppsala 171207

Source

CBET

peggs@bnl.gov

MLC in place for beam

CBET

September — FFAG17 CBET

ILC, MLC, & diagnostic beamline

400 kV cans Injection Cryomodule ICM Main Linac Cryomodule

Diagnostic beamline

CBET

Beam commissioning

Schedule

The 2-month timeline breaks down into 3 approximate phases:

- **Design and Construction** 1.
- Installation 2.
- 3. Commissioning

(months 1 to 24)

- (months 25 to 30)
- (months 31 to 42)

The first 4 technical milestones have been met on schedule or early.

	#	NYSERDA milestone	Baseline	Actual	Forecast
		NYSERDA funding start date		31-Oct-16	
Go/	1	Engineering design documentation complete	31-Jan-17	31-Jan-17	31-Jan-17
	2	Prototype girder assembled	30-Apr-17	30-Apr-17	30-Apr-17
iu-yu	3	Magnet production approved	30-Jun-17	23-Jun-17	30-Jun-17
	4	Beam through Main Linac Cryomodule	31-Aug-17	16-Jun-17	31-Aug-17
	5	First production hybrid magnet tested	31-Dec-17		31-Dec-17
	6	Fractional Arc Test: beam through MLC & girder	30-Apr-18		30-Apr-18
	7	Girder production run complete	30-Nov-18		30-Nov-18
	8	Final assembly & pre-beam commissioning complete	28-Feb-19		28-Feb-19
	9	Single pass beam with factor of 2 energy scan	30-Jun-19		30-Jun-19
	10	Single pass beam with energy recovery	31-Oct-19		31-Oct-19
	11	Four pass beam with energy recovery (low current)	31-Dec-19		31-Dec-19
	12	Project complete	30-Apr-20		30-Apr-20

no

Go/no-go 2

CBET

2016: Pre-CBETA

May 2017: MLC first beam

Go/no-go milestone 1

CBETA

April 2018: Fractional Arc Test

Go/no-go milestone 2: MUST DO ON TIME !

peggs@bnl.gov

CBETA

August 2019: 1-pass up, 1 down CBETA

Push toward 4-pass ERL operation until April 2020

peggs@bnl.gov

Uppsala 171207

Project management

WBS	WBS/System Name	Funding (\$M)	BNL Total (\$M)	CU Total (\$M)	BETA
A1.01	PROJECT MANAGEMENT	3.4	2.0	1.4	
A1.02	ACCELERATOR DESIGN	1.3	0.2	1.1	
A1.03	DC GUN/INJECTOR	0.6	-	0.6	
A1.04	RF SYSTEMS & CRYOGENICS	2.8	-	2.8	
A1.05	FFAG MAGNETS & GIRDERS	4.4	4.4	-	
A1.06	SPLITTER	2.0	-	2.0	
A1.07	POWER SUPPLIES	0.9	-	0.9	
A1.08	CONTROLS	0.8	0.2	0.6	
A1.09	INSTRUMENTATION	2.0	1.2	0.8	
A1.10	VACUUM & BEAM STOP	1.3	-	1.3	
A1.11	SYSTEM INTEGRATION	3.5	-	3.5	
A1.12	BEAM COMMISSIONING	1.2	-	1.2	
A1.13	SAFETY	0.8	-	0.8	
TOTALS	CBETA	25.0	8.0	17.0	

The BNL/CU total split is \$8.0M / \$17.0M (includes labor).

PM, AP, Instrumentation, Beam Commissioning: collaborative.

The other WBS activities are mostly – or completely – the responsibility of one partner or the other.

peggs@bnl.wBS

Name (PRIVATE)ppsala 171207

BNL Labor BNL Material 32

At Cornell, almost all procurements have been issued: RF amplifiers, vacuum pump skids, splitter magnets, vacuum pumps, vacuum gate valves, and power supplies.

- The largest outstanding construction cost is for two penetrations in the east wall of the experimental hall.

At BNL, Halbach magnets and girders are being purchased through four major procurements: permanent magnet material, magnet assembly, dipole correctors, & girder plates.

- Halbach magnet & girder costs will be accurately known when all bids are received, around December 2017.

Very strong focusing

Straight line arc cell geometry CBETA

As in EMMA, displaced quadrupoles in arc FODO cells act as "combined function magnets"

Orbits in arc cells

Periodic orbits at 4 design energies — 42, 78, 114, 150 MeV — are displaced over about 50 mm

Short magnets, large apertures: field maps !

"Long" drifts (12 cm) for Beam Position Monitors et cetera.

CBETAX
Tune per arc cell

Almost no layout symmetry

Independently tunable splitter beamlines (electromagnets)

Unlike EMMA, break the high rotational symmetry, to include straights, splitters & utilities!

CBETAX

Adiabatic transitions

Parameters (drift length, angle, dipole component, offsets ...) follow an adiabatic function in the transitions

CBETAX

Return arc optics

peggs@bnl.gov

Linac & splitter optics

CBET

Halbach magnets

Halbach (permanent) magnets

k=3

peggs@bnl.gov

CBET

Halbach magnet + weak corrector CBET

Horizontal or vertical dipole corrector allows vertical Halbach split.

Permanent magnet blocks glued in place inside a machined aluminum frame.

Alignment pins for repeatable corrector assembly.

Alignment pins for repeatable Halbach assembly

CBETA quads & arc cells

CBET

Halbach permanent magnet quadrupoles with offset centers: multiple styles of combined function magnets.

Design questions, physics vs engineering:

Q1: How many different magnet styles?

Q2: How many girder styles?

Magnets styles & girders

Halbach Styles (S. Berg, S. Brooks)				171113	Girder	OF	BD	BDT2	BDT1	OD	OFH	BDH
Style	Length	Int B.dl	Int G.dl	Radial	GFA1	4	4			χ.	X	1
name	C			aperture	GFX GFX	4 4	4 4					
	m	T.m	Т	mm	GFX GTA1	4 4	4	Δ				
OF	0.133	0.00000	-1.5378	43.1	GTA2	4		4				
BD	0.122	-0.03759	1.3600	40.1	GTA3 GTA4	4 4		2	2 4			
BDT1	0.122	-0.01223	1.3600	49.085	GTA5	4			4			
BDT2	0.122	-0.03102	1.3600	44.938	GTA6 GZX	4 4			4	4		
QD	0.122	0.00000	1.3595	40.1	GZX	4				4		
O FH	0.0665	4 0.00000	-0.7692	43.1	GZX GZ1	4 3				4 3		
BDH	0.061	-0.01881	0 6804	40 1	GZX	4				4		
DDII	0.001	0.01001	0.0001	10.1	GZX GZX	4 4				4 4		
					GTB1	4			4			
Δ.	GTB2	4			4							
Λ.	GTB3	4			4							
OFH & BDH are half length one-offs						4	/	2	2			
					GTB5	1		4 1				
					GFX	4	4	7				
0	GFX	4	4									
o n	GFX	4	4									
\ ^ /it	GFB1	4	4				1					
VVIL		107	32	20	28	27	1	1				
(Note broken symmetry!)												

peggs@bnl.gov

CBETA

Magnet & girder construction

CBET

Pre-production girder (April 2017) CBET

Integrated test stand: field + survey CBETAX

Rotating coil test stand

Green ring holds variable length iron tuning wires for harmonic reduction — "tuning"

Iron wire field quality tuning

peggs@bnl.gov

CBETAX

Splitters

Splitter tables

Splitters enable individual control of 4 beams, with tunable electro-magnets.

"Common" magnets are ordered, septum magnets are in design.

Common magnets & septa

CBET

Adjustable path lengths

Adjustable path lengths on enable energy recovery with 1, 2, 3, or 4 acceleration (and deceleration) passes

Changing configurations is time consuming ...

CBETAX

 $T_1 \cdot f_{\rm rf} = 343 - 0.5$

CBETA

CBETA

CBETA

Fractional Arc Test configuration CBET

Holes-in-the-wall

Holes are being cut in the east concrete wall for the beam stop & first arc girder.

There are geometric challenges to squeezing a 70.1 m circumference machine into L0E.

Implications for future flexibility & upgrades!

- Nov 30, 2017

peggs@bnl.gov

Holes-in-the-wall (2)

Beam stop penetration

December 6: The wall has not fallen down, so far.

Top ten:

- 1. Halbach magnets: schedule slip would delay CBETA.
- 2. Main Linac & Injection CryoModules: complex to repair
- 3. DC gun: like MLC & ICM, repairs could take months.
- 4. RF amplifiers: schedule, custom built, infant mortality.
- 5. East wall penetrations: tight schedule for FAT.
- 6. Splitter magnets: timely delivery
- 7. Beam halo & losses: additional shielding costs
- 8. Magnetic field fluctuations: e.g. power supply ripple
- Septum magnets, power supplies: technical challenge
 Key staff loss & availability: limited resources.

After NYSERDA: expanded collaboration

CBETA

An ERL is necessary for beam-cooling, to reach the highest EIC luminosities in any scenario:

- JLEIC or eRHIC,
- ring-ring or linac-ring
- conventional or coherent electron cooling

CBETA is a prime platform for Strong Electron Cooling R&D (see presentations by Benson, Douglas & Zhang at <u>https://www.bnl.gov/eiccm2017/</u>)

CBETA can also be considered to be a high current RF cryomodule test stand (eg 650 MHz cavities for eRHIC).

ERL landscape (Douglas)

peggs@bnl.gov

Uppsala 171207

66

CBETA

Dave Douglas:

What we have (Mosquito) ... vs ... what we need (F-22 Raptor)

Stealth by wood & canvas or by composites?

Uppsala 171207

CBETA

Electron cooling R&D parameters CBETA

Parameter	Unit	State-of- the-art	CBETA	Required
Bunch charge	nC	0.1	0.125	3
Beam current	А	0.01	0.04	0.1 to 1.0
Beam power	MW	1	6	10 to 100
Rep. rate	MHz		31 to 325	43.3

Although there is a long way to go to practical parameters, many high bunch current, beam quality & optics issues can be addressed in the configuration as-built by NYSERDA:

- 1. microbunching,
- 2. coherent synchrotron radiation,
- 3. space charge,
- 4. higher order modes,
- 5. beam break-up, ...

Multi-pass beam dynamics issues CBET

1. High current effects

- a) Space charge
- b) Halo dynamics
- c) HOM heating
- d) Intra-Beam Scattering
- e) Touschek scattering
- f) Gas scattering
- g) lon accumulation

2. Beam quality

- a) Emittance matching
- b) Time-of-flight control
- c) Wakefield interactions
- d) Micro-bunching instability
- e) Coherent Synch. Radiation

- 3. Transport of damaged beam
 - a) Phase space rotation
 - b) Large 6-D phase-space optics
- 4. Recovery topics
 - a) Energy spread growth during deceleration.
 - b) Transverse halo growth during deceleration.
 - c) Recirculative Beam Breakup
 - d) Ion instabilities
 - e) Simultaneous control of multiple beams

DarkLight – an experiment to find dark matter particles Compact Compton backscattering for hard x-rays THz laser – complementing CHESS Beam for time-resolved electron diffraction from 1 to 6 MeV Beam for Plasma Wakefield Acceleration ASML medical isotope cavity testing with beam Preparations for PERLE & LHeC Permanent magnet & very strong focusing optics test bed

- 1. NYSERDA funding Construct a high performance CBETA, commission to modest KPPs, e.g. 1 mA.
 - opportunities for participation in commissioning
- 2. DOE Nuclear Physics funding? EIC R&D @ CBETA commissioning towards ultimate parameters, e.g. 40 mA.
 - BNL + Cornell + JLab + ...
- 3. ?? funding Add a high energy CBETA beamline(s) for cooling &/or other experiments & applications
 - e.g. DarkLight (MIT) proposal, ...
- 4. "Zero" funding? Networking on common physics and engineering topics. ARIES?
 - bERLinPro, MESA, PERLE, UK-XFEL, ...

Summary
The project is 29% complete (out of 3.5 years & \$25M)

"Risks could occur at any time", but consider next steps in commissioning a state-of-the-art ERL:

- 1. 4 pass up, 4 pass down
- 2. Superconducting RF (1.3 GHz)
- 3. Very strong focusing single aperture optics
- 4. Halbach permanent magnet return arc

Next: perform challenging R&D with world-beating performance without additional capital expenditures

Capital expenditures, later, would enable much more, e.g. high-energy beamline, EIC cavity prototyping, etc.

Collaboration

CBET

We (BNL & Cornell) seek **DIRECT** collaboration in CBETA:

- individual beam commissioners in 2018
- students & post-docs
- JLab on EIC R&D
- potential "users" e.g. MIT

We also seek enhanced INDIRECT collaboration on topics of mutual interest with other ERL projects:

- bERLinPro, MESA, PERLE, UK-XFEL ...

CBETA near-term calendar

Technical Milestone		
2017		
Dec 19		Oversight Board meeting
Dec 31	5	"First arc production magnet tested"
2018		
Jan 15-17		PERLE collaboration meeting, Daresbury
Feb 12		Shift training begins (Bartnik)
Feb 12		Dario Pellegrini arrives at CU
Feb NN ?		FAT shifts begin
Feb 22-23		Advisory Committee meeting, CU
Mar NN ?		Cost, schedule & management review, BNL
April 30	6	"Fractional Arc Test"
Nov 30	7	"Girder production run complete"

17113 BET X

Backup slides

History of ERLs (Dave Douglas) CBETA

ustrial EUV Driver (20

Notes

CERN Courier article Advisory Committee topics Wencan slides Adam slides CBETAX