

From microscopic to macroscopic dynamics of super-conducting accelerating cavities

Anirban Krishna Bhattacharyya

	Length (m)	Input Energy (MeV)	Frequency (MHz)	Geometric β	# of Sections	Temp (K)
RFQ	4.7	75 × 10⁻₃	352.2		1	≈ 300
DTL	19	3	352.2		3	≈ 300
Spoke	58	50	352.2	0.5	14 (2c)	≈ 2
Low Beta	108	188	704.4	0.70	16 (4c)	≈ 2
High Beta	196	606	704.4	0.90	15 (8c)	≈ 2
HEBT	100	2500				

Courtesy Matts Lindroos (ESS)

Cavity Parameters

PARAMETER	SYMBOL	VALUE
Geometric beta	β	0.5
Accelerating gaps	n	3
Bare cavity Quality factor	Q ₀	1.2 X 10 ¹⁰
External Quality factor	Q _{ext}	1.76 X 10 ⁵
Cavity shape constant	R/Q	213 Ω
DC beam current	I _{b,DC}	62.5 mA
0.98 0.96 0.94 $ 0.92$ 0.92 0.9 0.92 0.9 0.88 0.86 0.84 $ 0.84$	· · · · · · · · · · · · · · · · · · ·	
0.45 0.5 0.5)/1ς β	5 270	5 10 15 20 25 Cavity number

Optimal Charging

Ζ

С

Instantaneous cavity voltage(V(t)) ${\color{black}\bullet}$

$$t_F \dot{V}(t) + \left(1 - i \frac{2\Delta\omega}{\omega} Q_L\right) V(t) = 2Z_L T I_g(t)$$

Filling time Loaded Loaded Generat

(Natural time scale)

Quality factor

b(

R

Reflected current ullet

$$\begin{split} I_r(t) &= \frac{V(t)}{2(R/Q)T} \left(\frac{1}{Q_{ext}} - \frac{1}{Q_0} + 2i\frac{\Delta\omega}{\omega} \right) - \dot{V}(t) \frac{1}{\omega(R/Q)T} \\ & \\ \text{External} \\ \text{Quality factor} \\ \end{split} \begin{array}{c} \text{Bare cavity} \\ \text{Quality factor} \\ \text{Quality factor} \\ \end{array} \end{split}$$

Minimum Action: Example from classical
$$I_{1}$$
mechanics

$$t_{1}$$

$$t_{2}$$

$$S = \int_{t_{1}}^{t_{2}} (K.E.-P.E.) dt = \int_{t_{1}}^{t_{2}} L dt = \int_{t_{1}}^{t_{2}} \left[\frac{1}{2}m\left(\frac{dx}{dt}\right)^{2} - V(x)\right] dt$$

$$L(V,\dot{V},t) = \frac{1}{2} \frac{Q_{ext}}{(R/Q)T^{2}} \left|\frac{V(\tilde{t})}{2}\left(\frac{1}{Q_{ext}} - \frac{1}{Q_{0}}\right) - \frac{dV(\tilde{t})}{d\tilde{t}}\frac{1}{\omega}\right|^{2} d\tilde{t}$$

$$\frac{\partial L}{\partial V} - \frac{d}{dt} \frac{\partial L}{\partial \dot{V}} = 0$$

10/19/2017 Anirban Krishna Bhattacharyya

$$\underbrace{$$

Optimal Charging

• The concept of minimum action,

$$\begin{split} \frac{\partial L}{\partial V} &- \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{V}} = 0 \\ & \downarrow \\ \text{Optimal charging profile} \\ V^o(\tau) &= V_c \frac{\sinh(\tau)}{\sinh(\hat{\tau}_i)}, \\ I_g^o(\tau) &= \frac{V_c}{2TZ_L} \frac{\exp \tau}{\sinh(\hat{\tau}_i)} \\ \tau &= \frac{t}{t_F}, \quad \hat{\tau}_i = \frac{\hat{t}_i}{t_F} \end{split}$$
Free parameter

Effect of Optimal filling

Practical sources

W. Doherty, A new high efficiency power amplifier for modulated waves, Radio Engineers, Proceedings of the Institute of 24 (9) (1936) 1163–1182. doi:10.1109/JRPROC.1936.228468.

B. Kim, J. Kim, I. Kim, J. Cha, The doherty power amplifier, Microwave Magazine, IEEE 7 (5) (2006) 42–50. doi:10.1109/MW-M.2006.247914.

R. Pengelly, N-way rf power amplifier with increased backoff power and power added efficiency, wO Patent App. PCT/US2003/002,365 (Aug. 7 2003).

URL http://www.google.com/patents/WO2003065573A1?cl=en

P. Colantonio, F. Giannini, R. Giofr, L. Piazzon, The doherty power ampli fier, INTERNATIONAL JOURNAL OF MICROWAVE AND OPTICAL TECHNOLOGY 5 (6) (2010) 419–430.

G. Ahn, M. su Kim, H. chul Park, S. chan Jung, J. ho Van, H. Cho, S. wook Kwon, J.-H. Jeong, K. hoon Lim, J. Y. Kim, S. C. Song, C.-S. Park, Y. Yang, Design of a high-efficiency and high-power inverted doherty amplifier, Microwave Theory and Techniques, IEEE Transactions on 55 (6) (2007) 1105–1111. doi:10.1109/TMTT.2007.896807.

NXP Semiconductors, AN10967 BLF578 demo for 352 MHz 1kW CW power, 2nd Edition, application note (November 2012).

D. Rees, D. Keffeler, W. Roybal, P. Tallerico, Characterization of a Klystrode as a RF Source for High-Average-Power Accelerators, Conf.Proc. C950501 (1995) 1521.

E. Montesinos, Tetrode power amplifiers, in: TIARA Workshop on RF Power Generation for Accelerators, Uppsala University, A[•] ngstr[•] om Laboratory, 2013.

N. Pupeter, Significant increase of efficiency of solid state amplifiers due to improved ac/dc conversion and adaption of p1 point to actual operating power, in: EnEfficient RF Sources, Cockcroft Institute, 2014.

Practical sources

Effect of Transit time factor

ESS operation: 14 Hz pulse rate 140 J/sec saved per cavity

Assuming 8000 hours/year of operation 1.12 MWhrs saved per cavity 2 SEK/kWhr => 2240 SEK

26 Spoke cavities, 20 years of operation, => 1.16 MSEK

- Losses on cavity surface $P_d = \frac{\omega_0 U}{Q_0} = \frac{\omega_0 \frac{\mu_0}{2} \int_0^{\hat{t}_i} |B|^2 dV}{Q_0}$
- $\bullet |B|^2 \propto |V|^2$
- Ratio of energy loss

 $Q_0 \longrightarrow \stackrel{\text{Intrinsic quality of the resonant}}{\operatorname{structure}}$

Cavity Quality factor

- To measure Quality factor of bare ESS superconducting spoke cavities
- Vertical tests in horizontal cryostat

http://newsline.linearcollider.org/2013/11/21/a-little-dirt-never-hurt/cavity-performance/

RF

Effect of cooling rate on Q_0

Residual resistance depends on trapped magnetic field

- Helmholtz Zentrum Berlin (HZB): magnetic field are generated by thermal currents.
- HZB & Cornell: Slow cooling to reduce thermal currents.
- Fermilab: Magnetic field (ambient) can be expelled by large temperature gradients creating a quick propagating super-conducting phase front.

Ginzburg-Landau Equations

$$\frac{1}{D} \left(\frac{\partial}{\partial t} + i2e\phi \right) \psi = -\left(\frac{\nabla}{i} - 2e\mathbf{A} \right)^2 \psi - \frac{1}{\xi(T)^2} \left(|\psi|^2 - 1 \right) \psi,$$
$$\mathbf{J} = \sigma \left(-\nabla\phi - \frac{\partial\mathbf{A}}{\partial t} \right) + \frac{1}{8\pi e\lambda(T)^2} \text{Real} \left[\psi^* \left(\frac{\nabla}{i} - 2e\mathbf{A} \right) \psi \right].$$

Journal of Computational Physics **179**, 127–139 (2002) doi:10.1006/jcph.2002.7047

A Fast Semi-Implicit Finite-Difference Method for the TDGL Equations

T. Winiecki and C. S. Adams

Department of Physics, University of Durham, Rochester Building, South Road, Durham, DH1 3LE, United Kingdom

- Reflected energy and thus waste can be reduced by proposed filling profile.
- But physical factors provide constraints which require increased investigation to better understand the super-conducting cavity.
- The proposed Q₀ measurement technique provides a means of accurately characterising the gradient dependent character of the super-conducting cavities.
- The rate of cooling has been found to influence cavity Q₀ and the G-L equations provide a means of theoretically explaining experimental observations.

Thank You

10/19/2017 Anirban Krishna Bhattacharyya

Digital loop delay

Doherty Architecture

