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Scope of project
 Study of uncontrolled beam loss scenarios
 How failure occurs
 Effect on the beam
 Subsequent beam losses (intensity, location)
 Time scales

 Detection of failures
 How to limit time between detection of failure and beam 

dump
 Mitigation of or protection against failures
 Simulations (mainly beam tracking and optics 

calculations)
 Experiments (using very fast diamond beam loss 

monitors)
 Also important to protect beam from unnecessary 

dumps!
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Beam induced damage

 SPS beam shot at copper cylinders
 1.5e11 protons per bunch @ 440 GeV
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Target 3
144b 
σ = 0.2mm

Target 2
108b
σ = 0.2mm

Target 1
144b
σ = 2mm

Courtesy of F.Burkart
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 144 bunches of 1.5e11 protons per bunch, 440 
GeV
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Beam induced damage

Courtesy of F.Burkart
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LHC Injection Failure
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 Before LHC commissioning, SPS beam hit aperture in LHC 
injection transfer line 

 3.4e13 protons @ 450 GeV
 Required changing chamber and a quadrupole

JAS14, Beam Transfer and Machine Protection, V. Kain
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Magnet damage

 Decomposition of insulation
 => short circuit

 Decomposition of superconducting strands
 => degradation of superconducting properties

 Need replace magnet
 => min. downtime ~3 months
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Ref 1157 K

Courtesy of V.Raginel
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LHC overview
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 Most of ring – periodic 
lattice of FODO cells

 Around interaction points, 
matching section
 Triplet quadrupoles 

(Q1,Q2,Q3) – very large beta 
functions

 Separation and recombination 
dipoles (D1 and D2)
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High Luminosity LHC (HL-LHC) changes

 To attain higher luminosity, higher bunch intensity 
and smaller β* (bunch size in collision point)

 Many changes in layout (e.g. Triplet quadrupoles, 
crab cavities ... )
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LHC HL-LHC
# bunches 2808 2808
Bunch intensity [protons 
per bunch]

1.15e11 2.2e11

β* [cm] 55 15
Stored Beam energy (@ 
7 TeV) [MJ]

362 693
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Failure Classifications

 Slow failures (> 1 s)
 Cryogenics, failure of orbit/tune feedback...
 Manual intervention possible

 Fast failures (> 15 ms)
 Trip of RF system, superconducting circuit/magnet power problem
 Protection by multiple systems

 Very fast failures(> 3 LHC turns, 270 µs)
 UFOs (macroparticles entering beam), resistive magnet power problem, 

transverse damper failure, crab cavity failure
 Protection by fastest systems

 Ultrafast failures(< 3 turns)
 Injection/extraction failure, loss of beam-beam kick, quench heaters
 Protection dump not possible (rely on passive protection)

9



logo
area

Accelerator Physics – some basic concepts

 Beta function describes the oscillation of off-center 
particles, a function of the quadrupoles
 Beta function is also related to the beam size

 Transverse bunch particle distribution can be modelled 
as sum of two 2d-Gaussians (beam core + beam halo)

 1 σ [m] ~ 1 standard deviation/width of distribution
 𝜎𝜎(𝑠𝑠) = 𝛽𝛽(𝑠𝑠)𝜖𝜖
 𝑠𝑠 ∶ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑
 𝜖𝜖 ∶ 𝑑𝑑𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑, 𝑙𝑙𝑎𝑎𝑑𝑑𝑎𝑎𝑙𝑙𝑙𝑙𝑑𝑑 𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙𝑠𝑠𝑎𝑎𝑑𝑑𝑎𝑎𝑠𝑠𝑑𝑑 𝑠𝑠𝑠𝑠𝑎𝑎𝑑𝑑𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 𝑠𝑠𝑝𝑙𝑙𝑠𝑠𝑑𝑑 𝑠𝑠𝑠𝑠𝑙𝑙𝑑𝑑𝑑𝑑
 Off-center particles remain at constant radius in phase space

 Normalized to beam σ – convenient unit
 Phase must be taken into account for very fast failures
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Collimation system overview

 Smallest aperture bottleneck
 Designed to clean off-center particles
 First elements to intercept the beam for most failures
 Consists of three sets

 Primary collimators (TCP, ~5.5 σ aperture, ~2 mm)
 Carbon
 Diffuses protons

 Secondary
 Carbon
 Shower creation

 Tertiary
 Tungsten
 Absorbs showers

 Orbit excursion of ~3 σ at 7 TeV enough to damage
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Damage limits

 Collimator system
 288 nominal bunches (one SPS beam) at 450 GeV
 8 nominal bunches at 7 TeV

 ~Half this for HL-LHC

 Magnets
 Quench limit: ~1e9 protons @ 450 GeV, ~1e7 

protons @ 7 TeV
 Damage limit: 1e12 protons @ 450 GeV, 1.e11 

protons @ 7 TeV
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Magnet protection

 When a quench occurs
 Usually localized
 Must be spread quickly (~100 ms) to diffuse the resistive 

current loss throughout the magnet

 Quench heaters: resistive plates attached to magnet 
(current system)

 A new system for heating whole magnet at once in 
development – explained further down

 Both types induce magnetic field in beam area
 Affects the beam!
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Quench heaters in Dipoles

 From simulations: the QH 
cause a 0.7 mT field in the 
beam area

 Associated orbit change: +/-
400 µm, confirmed 
experimentally

 A delay of  up to 3 ms (35 
turns) between QH firing and 
dump 

 In HL-LHC triplet quadrupole, 
up to 52 σ kick
 Imperative to dump first

14

QH induced magnetic field
(T)

Measured and simulated orbit change
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CLIQ – Coupling Loss Induced Quench
 CLIQ – a new type of quench protection system
 Capacitor discharges current in magnet circuit
 2 kA of current going into the magnet coils – imperative to study its 

criticality
 Poles P3 and P1 see lower current
 Poles P4 and P2 see higher current
 Heat is deposited in the copper matrix via inter-filament and inter-strand 

coupling losses, causing a quench
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I_nominal

I_CLIQ

Q2 current – CLIQ discharge

current in poles

CLIQ current

CLIQ

Magnet Poles
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CLIQ in Triplet (Q2 and Q3)
 Differences in connection, different magnetic fields.
 Q1 electrically same as Q3
 From optics, Q3 has larger beta function, and is thus more critical
 Q2: Symmetric discharge -> Quadrupolar field -> beta beating
 Q1/Q3: Asymmetric discharge -> Skew dipolar field -> orbit excursion

16

Q2, peak field (12 ms) Q3, peak field (20 ms)
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Q3 – orbit excursion
 Beam lost shortly after LHC turn 100

17

Normal LHC – D1 failure

1 σ – 4 ms
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Q2 – Beta Beating
 Beta beating of up to 100 % at the TCPs
 Beam size changes -> losses at TCPs
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Crab Cavities

▪ In HiLumi LHC, due to smaller β* and to limit beam-beam 
effects the crossing angle will be increased

▪ ⇾ Lower luminosity:

19

Geometric Factor

2012 
LHC

2015 
LHC

HL-LHC

313 290 590

0.88 0.85 0.31

Piwinski Reduction (Geometric) Factor
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Crab Cavities
▪ Cavity with sinusoidal transverse kick - bunch is tilted - better 

overlap at crossing point

20

E

Phase advance:
0° - kick in x’ 90° - max offset in x

180° - x’ set to 0 
with same voltage



logo
area

Crab Cavities – failure modes

▪Voltage drop (~4 LHC turns)
▪Residual crabbing outside Interaction Point large

▪Phase change (must be driven by the RF 
control)

▪Kicks beam core out of orbit
▪Quench (combination of the above)

21
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Consequences of CC failure

▪ Phase shift causes beam core to be 
transversally kicked - can give fast beam loss 

22

▪ If crabbing not compensated (e.g. voltage drop), 
transverse beam distribution wider - increases 
hazard of other failures

Nominal
180 µrad tilt
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Combined failures – beam beam effect

 The two beams interact with each other 
electromagnetically in crossing points
 Transverse kick (orbit change, main issue)
 Emittance growth
 Tune spread
 ...

 Dumping one beam gives sudden loss of beam-
beam kick

 After a given failure, beams will always be 
dumped
 -> this type of combined failure must thus always be 

considered

23
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Current work...

 Experiment on Thursday
 Studying UFO dynamics using diamond beam loss 

monitors
 Two IPAC papers (preliminary titles)
 Results of UFO dynamics studies with beam in the 

LHC
 Crab cavity failures combined with loss of beam-

beam effect in the HL-LHC
 Article on ”Fast failures in the LHC and HL-

LHC”
 First draft by end of this year...

24
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Thank you!
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Introduction
 16L2 refers to loss events in an interconnection in LHC sector 16L2
 Three types:

 Steady state losses (resolved)
 UFO-like losses causing beam instability (fast loss rise, beam dump, quench)
 UFO-like losses not causing instabilities (do not dump)

Björn Lindström 26Courtesy of A.Lechner
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Introduction
 61 dumps since May until 25th Oct (7 more until 28th Nov)

 294 dumps due to faults, 64 due to beam losses (incl 16L2)

Björn Lindström 27
Courtesy of A.Lechner
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Observables and Goals

 Hypothesis:
 Solid macro-particle enters beam -> gives UFO-like losses
 Macro-particle evaporates -> charged particle cloud -> beam instability -> losses in TCPs

 Local dBLM: direct losses from 16L2 interaction (relatively low signal)
 IR7 dBLM: losses due to build-up of instabilities

 From local data, study the UFO dynamics
 Bunch blow-up in H or V
 Displacement of bunches in H,V or diagonally

 -> Tells us which direction the UFO is coming from (see MD on UFO dynamics with wirescanner)

 From IR7 data, study how the instability develops

 Fastest losses observed in the LHC

Björn Lindström 28
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16L2 Machine Development test (MD)

 Unique opportunity with UFOs on demand
 High bunch intensity, many bunches and high energy seems to trigger them

 Foreseen to conduct MD before end of this run
 Various combinations of blown up and displaced bunches
 -> study UFO dynamics as shown by previous MD2036 using wirescanner
 -> understand 16L2 in case it reoccurs

 Challenges for dBLM part:
 Optimize signal
 Use many bunches with set properties for better statistics

 How many bunches required will be an outcome of current analysis
 From understanding the histogram

 How to combine signals from the different bunches to draw conclusions
 Increasing statistics without destroying relevant data

Björn Lindström 29
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Björn Lindström 30
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