# Simulation and optimisation of the Drive Beam Recombination Complex for CLIC

#### Raul Costa

June 18, 2018

Uppsala, Sweden







#### Outline

- 1 Introducing CLIC and the DBRC
- 2 Design challenges
- Results
- 4 Optimisation techniques with particle losses
- **5** Conclusions and Outlook

Introducing CLIC and the DBRC









# CLIC parameters

| Parameter                           | Symbol                            | Unit                                    | Stage 1 | Stage 2       | Stage 3     |
|-------------------------------------|-----------------------------------|-----------------------------------------|---------|---------------|-------------|
| Centre-of-mass energy               | $\sqrt{s}$                        | GeV                                     | 380     | 1500          | 3000        |
| Repetition frequency                | $f_{\rm rep}$                     | Hz                                      | 50      | 50            | 50          |
| Number of bunches per train         | $n_b$                             |                                         | 352     | 312           | 312         |
| Bunch separation                    | $\Delta t$                        | ns                                      | 0.5     | 0.5           | 0.5         |
| Pulse length                        | $	au_{ m RF}$                     | ns                                      | 244     | 244           | 244         |
| Accelerating gradient               | G                                 | MV/m                                    | 72      | 72/100        | 72/100      |
| Total luminosity                    | L                                 | $10^{34} \text{ cm}^{-2} \text{s}^{-1}$ | 1.5     | 3.7           | 5.9         |
| Luminosity above 99% of $\sqrt{s}$  | $\mathscr{L}_{0.01}$              | $10^{34} \text{ cm}^{-2} \text{s}^{-1}$ | 0.9     | 1.4           | 2           |
| Main tunnel length                  |                                   | km                                      | 11.4    | 29.0          | 50.1        |
| Number of particles per bunch       | N                                 | $10^{9}$                                | 5.2     | 3.7           | 3.7         |
| Bunch length                        | $\sigma_{z}$                      | μm                                      | 70      | 44            | 44          |
| IP beam size                        | $\sigma_{x}/\sigma_{y}$           | nm                                      | 149/2.9 | $\sim 60/1.5$ | $\sim 40/1$ |
| Normalised emittance (end of linac) | $\varepsilon_{x}/\varepsilon_{y}$ | nm                                      | 920/20  | 660/20        | 660/20      |
| Normalised emittance (at IP)        | $\epsilon_{x}/\epsilon_{y}$       | nm                                      | 950/30  | _             | _           |
| Estimated power consumption         | $P_{ m wall}$                     | MW                                      | 252     | 364           | 589         |

## The Drive Beam Recombination Complex

The DBRC is located between the drive beam linac and the deceleration sectors

It's role is to combine the drive beam by a factor  $24 \times$  into high frequency pulses





## The Drive Beam Recombination Complex

The DBRC is located between the drive beam linac and the deceleration sectors

It's role is to combine the drive beam by a factor  $24 \times$  into high frequency pulses





### Beam parameters

#### Injection Parameters:

$$E = 1.9/2.38 \,\text{GeV}^*$$

$$\delta = 0.85 \,\%$$

$$\sigma_z = 1 \,\text{mm}$$

$$\varepsilon_x = 50 \,\mu\text{m}$$

$$\varepsilon_y = 50 \,\mu\text{m}$$

#### Extraction Parameters:

$$\sigma_z = 1 \,\mathrm{mm}$$
 $\varepsilon_x < 150 \,\mu\mathrm{m}$ 
 $\varepsilon_y < 150 \,\mu\mathrm{m}$ 



## Beam parameters

#### **DBRC** injection Injection Parameters: 2.44 $= 1.9/2.38 \,\mathrm{GeV}^*$ 2.42 $\delta = 0.85 \%$ 2.4 $= 1 \,\mathrm{mm}$ $\varepsilon_x = 50 \, \mu \mathrm{m}$ 2.38 $\varepsilon_y = 50 \, \mu \mathrm{m}$ 2.36 Extraction Parameters: 2.34 $\sigma_z = 1 \, \mathrm{mm}$ 2.32 $\varepsilon_x < 150 \, \mu \mathrm{m}$ 2.3 $150 \, \mu \mathrm{m}$ -2 -3 -1 2 3 0 1 z [mm]

\* The DB energy is 1.9 GeV for CLIC's 1st stage and 2.38 GeV for stages 2 and 3. Most optical properties of the lattice are similar.

#### Notation

We are tracking 12 bunch "families" differentiated by the number of turns they take in CR1 and CR2:  $\mathbf{b}_{\text{CR1}}^{\text{CR2}}$ 



Design challenges

### Transverse pulse emittance



Targeting  $\langle \varepsilon \rangle$  does not ensure twiss and centre-orbit match We project all distributions on top of one-another and compute  $\tilde{\varepsilon}$ 

$$\tilde{\varepsilon} \geq \langle \varepsilon \rangle$$

#### Transverse pulse emittance



Targeting  $\langle \varepsilon \rangle$  does not ensure twiss and centre-orbit match We project all distributions on top of one-another and compute  $\tilde{\varepsilon}$ 

$$\tilde{\varepsilon} \geq \langle \varepsilon \rangle$$

Note: I'll talk more about emittance evaluation emittance later

## Longitudinal profile



$$z(s) = z + R_{56}\delta + T_{566}\delta^2$$

$$z(s) = z + R_{56}\delta + T_{566}\delta^2$$

$$T_{566_{[n]}} = \sum_{i} R_{5i_{[n]}} T_{i66_{[n-1]}} + \sum_{ij} T_{5ij_{[n]}} R_{i6_{[n-1]}} R_{i6_{[n-1]}}$$

$$z\left(s\right) = z + R_{56}\delta + T_{566}\delta^{2}$$

$$T_{566[n]} = \sum_{i} R_{5i[n]} T_{i66[n-1]} + \sum_{ij} T_{5ij[n]} R_{i6[n-1]} R_{i6[n-1]}$$

$$T_{566[n]} \sim T_{566[n-1]} + \left(R_{26[n-1]}\right)^2 T_{522[n]}$$

$$z\left(s\right) = z + R_{56}\delta + T_{566}\delta^{2}$$

$$T_{566_{[n]}} = \sum_{i} R_{5i_{[n]}} T_{i66_{[n-1]}} + \sum_{ij} T_{5ij_{[n]}} R_{i6_{[n-1]}} R_{i6_{[n-1]}}$$

$$T_{566[n]} \sim T_{566[n-1]} + \left(R_{26[n-1]}\right)^2 T_{522[n]}$$

$$T_{522[Drift]} = \frac{L}{2}$$

## $T_{566}$ tracking - single arc (CR2)







Results

## Combiner Ring 1 optimisation



## Longitudinal profile before CR2 optimisation



## 80 $\mu \mathrm{m}$ results - $T_{566}$ correction



## Combiner Ring 2 optimisation



## Longitudinal profile after CR2 optimisation



# Extraction results (after TTA)

| Bunch                           | $S_{ m total} \left[ { m m}  ight]$ | $\varepsilon_x \left[ \mu \mathrm{m} \right]$ | $\varepsilon_y \left[ \mu \mathrm{m} \right]$ | $T_{566}  [{ m m}]$ | $\sigma_z  [\mathrm{mm}]$ |
|---------------------------------|-------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------|---------------------------|
| $b_{2.5}^{-3.5}$                | 4145                                | 207                                           | 161                                           | 0.23                | 0.43                      |
| $b_{2}^{2.5}$                   | 3706                                | 169                                           | 137                                           | 0.21                | 0.42                      |
| $b_{2.5}^{2.5}$                 | 3267                                | 166                                           | 154                                           | 0.21                | 0.42                      |
| $b_{2.5}^{-0.5}$                | 2828                                | 116                                           | 98                                            | 0.22                | 0.41                      |
| $b_{1.5}^{3.5}$                 | 3853                                | 106                                           | 142                                           | 0.35                | 0.42                      |
| $b_{1.5}^{2.5}$                 | 3414                                | 84                                            | 107                                           | 0.36                | 0.42                      |
| $b_{1.5}^{-1.5}$                | 2975                                | 87                                            | 98                                            | 0.38                | 0.42                      |
| $b_{1.5}^{\ 0.5}$               | 2536                                | 80                                            | 85                                            | 0.39                | 0.42                      |
| $b_{0.5}^{3.5}$ $b_{0.5}^{2.5}$ | 3560                                | 107                                           | 146                                           | 0.54                | 0.43                      |
| $b_{0.5}^{-2.5}$                | 3121                                | 96                                            | 113                                           | 0.54                | 0.43                      |
| $b_{0.5}^{-1.5}$                | 2682                                | 89                                            | 101                                           | 0.57                | 0.43                      |
| $b_{0.5}^{-0.5}$                | 2243                                | 108                                           | 91                                            | 0.59                | 0.43                      |
| $\mathbf{b}_{i}^{\ j}$          | <del></del>                         | 117                                           | 112                                           | _                   |                           |

#### $R_{56}$ in the transfer lines



The decrease in bunch length originates in non-zero  $R_{56}$  (unwanted side-effect of previous optimisation scans)

### $R_{56}$ in the transfer lines



The decrease in bunch length originates in non-zero  $R_{56}$  (unwanted side-effect of previous optimisation scans)

TL3 has already been optimised to have  $R_{56} \sim 0$ 

#### $R_{56}$ in the transfer lines



The decrease in bunch length originates in non-zero  $R_{56}$  (unwanted side-effect of previous optimisation scans)

TL3 has already been optimised to have  $R_{56} \sim 0$  TL2 is next...

Optimisation techniques with particle losses

## General technique

Optimisation is performed by changing optical strengths of some elements

Placet2's API to Octave to access Nelder-Mead's downhill simplex algorithm

We Define element families (7-40) and minimize  $w_1 \varepsilon_x + w_2 \varepsilon_y + w_3 T_{566}^*$ 

Takes a lot of computing time and fine tuning



<sup>\*</sup> In reality minimizing the error of a linear fit is more efficient

## Emittance evaluation from a particle distribution

In multiple particle tracking we evaluate emittance as

$$\varepsilon_{q} = \sqrt{\det \left( \begin{bmatrix} \operatorname{cov}(q, q) & \operatorname{cov}(q, q') \\ \operatorname{cov}(q', q) & \operatorname{cov}(q', q') \end{bmatrix} \right)}$$

## Emittance evaluation from a particle distribution

In multiple particle tracking we evaluate emittance as

$$\varepsilon_{q} = \sqrt{\det \left( \begin{bmatrix} \operatorname{cov}(q, q) & \operatorname{cov}(q, q') \\ \operatorname{cov}(q', q) & \operatorname{cov}(q', q') \end{bmatrix} \right)}$$

However, if particle losses are possible during optimisation, increasing particle loss will decrease the  $\varepsilon_q$  evaluation

In multiple particle tracking we evaluate emittance as

$$\varepsilon_{q} = \sqrt{\det \left( \begin{bmatrix} \operatorname{cov}(q, q) & \operatorname{cov}(q, q') \\ \operatorname{cov}(q', q) & \operatorname{cov}(q', q') \end{bmatrix} \right)}$$

However, if particle losses are possible during optimisation, increasing particle loss will decrease the  $\varepsilon_q$  evaluation

The optimisation scan will therefore "attempt" to lose more particles!

When 1st attempting to address this, we added a term to the merit function such that

$$w_1 \varepsilon_x + w_2 \varepsilon_y + w_3 T_{566} + W_4 N_{\text{Losses}}; \quad W_4 \gg w_i$$

When 1st attempting to address this, we added a term to the merit function such that

$$w_1 \varepsilon_x + w_2 \varepsilon_y + w_3 T_{566} + W_4 N_{\text{Losses}}; \quad W_4 \gg w_i$$

However Nelder-Mead's symplex is not very suitable for merit functions with very sudden changes in steepness. This makes it harder for optimisation scans to converge (we will see a plot in a bit)

When 1st attempting to address this, we added a term to the merit function such that

$$w_1 \varepsilon_x + w_2 \varepsilon_y + w_3 T_{566} + W_4 N_{\text{Losses}}; \quad W_4 \gg w_i$$

However Nelder-Mead's symplex is not very suitable for merit functions with very sudden changes in steepness. This makes it harder for optimisation scans to converge (we will see a plot in a bit)

We have therefore decided to remove the  $N_{\text{Losses}}$  term and revise the way the merit function evaluates  $\varepsilon_q$ .

Instead of using the full distribution, we compute  $\varepsilon_q$  using a fixed number of macro particles (99% of the original distribution)

When 1st attempting to address this, we added a term to the merit function such that

$$w_1 \varepsilon_x + w_2 \varepsilon_y + w_3 T_{566} + W_4 N_{\text{Losses}} ; \quad W_4 \gg w_i$$

However Nelder-Mead's symplex is not very suitable for merit functions with very sudden changes in steepness. This makes it harder for optimisation scans to converge (we will see a plot in a bit)

We have therefore decided to remove the  $N_{\text{Losses}}$  term and revise the way the merit function evaluates  $\varepsilon_q$ .

Instead of using the full distribution, we compute  $\varepsilon_q$  using a fixed number of macro particles (99% of the original distribution)

This also provides a better fit to the particle distribution (since the bunch is not actually Gaussian at extraction)



## Gaussian fit comparison



Conclusions and Outlook

### Conclusions

- Placet2 has been updated to track individual tensor elements
- The main DBRC design challenges were identified and addressed
- With an injected beam of  $50 \,\mu\text{m}$ , the latest lattice has minimal  $T_{566}$  (<  $60 \,\text{cm}$ ) while meting the emittance budget ( $\varepsilon_x = 117 \,\mu\text{m}$ ;  $\varepsilon_y = 112 \,\mu\text{m}$ )
- The transfer lines present some unwanted  $R_{56}$  ( $\sim$  -7 cm)
- Particle loss and long non-Gaussian tails are detrimental to the performance of our optimisation scans
- When losses are possible, estimating  $\varepsilon$  using 99% of the particle distribution improves the performance of optimisation scans
- It also provides a better fit for distributions with long tails

### Outlook

#### • DBRC

- Remove  $R_{56}$  from TL2 (or update the final chicane)
- Implement the delay loop's short path
- Try to optimise for  $\delta = 1\%$
- Implement misalignments and beam-based alignment techniques

### Outlook

#### • DBRC

- Remove  $R_{56}$  from TL2 (or update the final chicane)
- Implement the delay loop's short path
- Try to optimise for  $\delta = 1\%$
- Implement misalignments and beam-based alignment techniques

#### • Placet2

- Implement CSR (and update ISR)
- Implement decelerators
- Improve parallelization, LXplus support, etc...

### Outlook

#### • DBRC

- Remove  $R_{56}$  from TL2 (or update the final chicane)
- Implement the delay loop's short path
- Try to optimise for  $\delta = 1\%$
- Implement misalignments and beam-based alignment techniques

#### • Placet2

- Implement CSR (and update ISR)
- Implement decelerators
- Improve parallelization, LXplus support, etc...
- Full drive beam integration



# Thank you

## Extra slides



### **Output:**

$$\varepsilon_x \le 35 \,\mu\mathrm{m}$$

$$\varepsilon_y \le 35 \,\mu\mathrm{m}$$

$$E = 50 \,\mathrm{MeV}$$

$$\delta = 0.95\%$$



<sup>\*</sup> Thanks to Steffen Doebert and Shahin Hajari for the distributions



### Input:

$$\varepsilon_q = 30 \, \mu \mathrm{m}$$

$$E = 50 \,\mathrm{MeV}$$

$$\delta = 1\%$$

Gaussian



### Input:

$$\varepsilon_q = 30 \, \mu \mathrm{m}$$

$$E = 50 \,\mathrm{MeV}$$

$$\delta = 1\%$$

Gaussian

### Output:

$$\varepsilon_q = 31 \,\mu\mathrm{m}$$

$$E = 1.9 \,\mathrm{GeV}$$

$$\delta = 0.84\%$$



<sup>\*</sup> Thanks to Avni Aksoy and Andrea Latina for the distribution

## $R_{56}$ before optimisation



\* From Eduardo Marin's CLIC Workshop 2016

## DBA simulation parameters

| DBA simulation parameters:                          |     |
|-----------------------------------------------------|-----|
| Initial energy (MeV)                                | 50  |
| Final energy (GeV)                                  | 1.9 |
| Initial Energy Spread (%)                           | 1.0 |
| Bunch Charge (nC)                                   | 8.4 |
| Initial emittance $(\mu m)$                         | 30  |
| BPM resolution $(\mu m)$                            | 10  |
| Misalignment errors - Quad. and Acc. ( $\mu$ m rms) | 200 |
| Pitch errors - Acc. ( $\mu$ rad rms)                | 200 |

## DBA simulations (WFS)



- Average final emittance:  $\varepsilon_x = 31 \ \mu \text{m}, \ \varepsilon_y = 30 \ \mu \text{m}$
- Final energy spread of  $0.836\% \pm 0.004\%$

## CR1 Lattice



### CR2 Lattice

