Simulation and optimisation of the Drive Beam Recombination Complex for CLIC

Raul Costa

June 18, 2018

Uppsala, Sweden

Outline

(1) Introducing CLIC and the DBRC
(2) Design challenges
(3) Results
(4) Optimisation techniques with particle losses
(5) Conclusions and Outlook

Introducing CLIC and the DBRC

The Compact Linear Collider (CLIC)

CLIC parameters

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	$f_{\text {rep }}$	Hz	50	50	50
Number of bunches per train	n_{b}		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	τ_{RF}	ns	244	244	244
Accelerating gradient	G	MV / m	72	$72 / 100$	$72 / 100$
Total luminosity	\mathscr{L}	$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	0.9	1.4	2
Main tunnel length		km	11.4	29.0	50.1
Number of particles per bunch	N	10^{9}	5.2	3.7	3.7
Bunch length	σ_{z}	$\mu \mathrm{~m}$	70	44	44
IP beam size	σ_{x} / σ_{y}	nm	$149 / 2.9$	$\sim 60 / 1.5$	$\sim 40 / 1$
Normalised emittance (end of linac)	$\varepsilon_{x} / \varepsilon_{y}$	nm	$920 / 20$	$660 / 20$	$660 / 20$
Normalised emittance (at IP)	$\varepsilon_{x} / \varepsilon_{y}$	nm	$950 / 30$	-	-
Estimated power consumption	$P_{\text {wall }}$	MW	252	364	589

The Drive Beam Recombination Complex

The DBRC is located between the drive beam linac and the deceleration sectors

It's role is to combine the drive beam by a factor $24 \times$ into high frequency pulses

The Drive Beam Recombination Complex

The DBRC is located between the drive beam linac and the deceleration sectors

It's role is to combine the drive beam by a factor $24 \times$ into high frequency pulses

Beam parameters

Injection Parameters:

$$
\begin{aligned}
E & =1.9 / 2.38 \mathrm{GeV}^{*} \\
\delta & =0.85 \% \\
\sigma_{z} & =1 \mathrm{~mm} \\
\varepsilon_{x} & =50 \mu \mathrm{~m} \\
\varepsilon_{y} & =50 \mu \mathrm{~m}
\end{aligned}
$$

Extraction Parameters:

$$
\sigma_{z}=1 \mathrm{~mm}
$$

$$
\varepsilon_{x}<150 \mu \mathrm{~m}
$$

$$
\varepsilon_{y}<150 \mu \mathrm{~m}
$$

Beam parameters

Injection Parameters:

E	$=1.9 / 2.38 \mathrm{GeV}^{*}$
δ	$=0.85 \%$
σ_{z}	$=1 \mathrm{~mm}$
ε_{x}	$=50 \mu \mathrm{~m}$
ε_{y}	$=50 \mu \mathrm{~m}$

Extraction Parameters:

$$
\begin{aligned}
& \sigma_{z}=1 \mathrm{~mm} \\
& \varepsilon_{x}<150 \mu \mathrm{~m} \\
& \varepsilon_{y}<150 \mu \mathrm{~m}
\end{aligned}
$$

* The DB energy is 1.9 GeV for CLIC's 1st stage and 2.38 GeV for stages 2 and 3 . Most optical properties of the lattice are similar.

Notation

We are tracking 12 bunch "families" differentiated by the number of turns they take in CR1 and CR2: $\mathbf{b}_{\mathrm{CR} 1}^{\mathrm{CR} 2}$

Design challenges

Transverse pulse emittance

Targeting $\langle\varepsilon\rangle$ does not ensure twiss and centre-orbit match We project all distributions on top of one-another and compute $\tilde{\varepsilon}$

$$
\tilde{\varepsilon} \geq\langle\varepsilon\rangle
$$

Transverse pulse emittance

Targeting $\langle\varepsilon\rangle$ does not ensure twiss and centre-orbit match We project all distributions on top of one-another and compute $\tilde{\varepsilon}$

$$
\tilde{\varepsilon} \geq\langle\varepsilon\rangle
$$

Note: I'll talk more about emittance evaluation emittance later

Longitudinal profile

DBRC before optimisation

Source of the longitudinal issues

$$
z(s)=z+R_{56} \delta+T_{566} \delta^{2}
$$

Source of the longitudinal issues

$$
\begin{aligned}
& z(s)=z+R_{56} \delta+T_{566} \delta^{2} \\
& T_{566_{[n]}}=\sum_{i} R_{5 i_{[n]}} T_{i 66_{[n-1]}}+\sum_{i j} T_{5 i j_{[n]}} R_{i 6_{[n-1]}} R_{i 6_{[n-1]}}
\end{aligned}
$$

Source of the longitudinal issues

$$
\begin{aligned}
& z(s)=z+R_{56} \delta+T_{566} \delta^{2} \\
& T_{566_{[n]}}=\sum_{i} R_{5 i_{[n]}} T_{i 66_{[n-1]}}+\sum_{i j} T_{5 i j_{[n]}} R_{i 6_{[n-1]}} R_{i 6_{[n-1]}} \\
& T_{566_{[n]}} \sim T_{566_{[n-1]}}+\left(R_{26_{[n-1]}}\right)^{2} T_{522_{[n]}}
\end{aligned}
$$

Source of the longitudinal issues

$$
\begin{aligned}
& z(s)=z+R_{56} \delta+T_{566} \delta^{2} \\
& T_{566_{[n]}}=\sum_{i} R_{5 i_{[n]}} T_{i 66_{[n-1]}}+\sum_{i j} T_{5 i j_{[n]}} R_{i 6_{[n-1]}} R_{i 6_{[n-1]}} \\
& T_{566_{[n]}} \sim T_{566_{[n-1]}}+\left(R_{26_{[n-1]}}\right)^{2} T_{522_{[n]}} \\
& T_{522_{[\text {Drift }]}}=\frac{L}{2}
\end{aligned}
$$

T_{566} tracking - single arc (CR2)

Results

Combiner Ring 1 optimisation

Emittance $[\mu \mathrm{m}]$	$\mathrm{b}_{0.5}^{j}$	$\mathrm{~b}_{1.5}^{j}$	$\mathrm{~b}_{2.5}^{j}$	$\left\langle\varepsilon_{i}\right\rangle$	$\tilde{\varepsilon}_{i}$
Horizontal	79	72	90	80	88
Vertical	56	56	64	59	59

Longitudinal profile before CR2 optimisation

$80 \mu \mathrm{~m}$ results $-T_{566}$ correction

Combiner Ring 2 optimisation

Before optimisation

Emittance $[\mu \mathrm{m}$]
$\mathrm{b}_{1.5}^{0.5}$
$\mathrm{b}_{1.5}^{1.5}$
Horizontal
Vertical
$75 \quad 77$
$65 \quad 70$

After optimisation

$\mathrm{b}_{1.5}^{2.5} \quad \mathrm{~b}_{1.5}^{3.5}$
$\left\langle\varepsilon_{i}\right\rangle \quad \tilde{\varepsilon}_{i} \quad \tilde{\varepsilon}_{i}\left(\mathrm{~b}_{i}{ }^{j}\right)$
$\begin{array}{lll}84 & 87 & 120\end{array}$
$70 \quad 70 \quad 71$

Longitudinal profile after CR2 optimisation

Extraction results (after TTA)

Bunch	$S_{\text {total }}[\mathrm{m}]$	$\varepsilon_{x}[\mu \mathrm{~m}]$	$\varepsilon_{y}[\mu \mathrm{~m}]$	$T_{566}[\mathrm{~m}]$	$\sigma_{z}[\mathrm{~mm}]$
$\mathrm{b}_{2}{ }^{3.5} 5$	4145	207	161	0.23	0.43
$\mathrm{~b}_{2.5}^{2.5}$	3706	169	137	0.21	0.42
$\mathrm{~b}_{2.5}^{1.5}$	3267	166	154	0.21	0.42
$\mathrm{~b}_{2.5}^{0.5}$	2828	116	98	0.22	0.41
$\mathrm{~b}_{1.5}^{3.5}$	3853	106	142	0.35	0.42
$\mathrm{~b}_{1.5} .5$	3414	84	107	0.36	0.42
$\mathrm{~b}_{1.5}^{1.5}$	2975	87	98	0.38	0.42
$\mathrm{~b}_{1.5}^{0.5}$	2536	80	85	0.39	0.42
$\mathrm{~b}_{0}^{3.5}$	3560	107	146	0.54	0.43
$\mathrm{~b}_{0.5}^{3.5}$	3121	96	113	0.54	0.43
$\mathrm{~b}_{0} .5$	2682	89	101	0.57	0.43
$\mathrm{~b}_{0.5}^{0.5}$	2243	108	91	0.59	0.43
$\mathrm{~b}_{i}{ }^{j}$	-	117	112	-	-

R_{56} in the transfer lines

The decrease in bunch length originates in non-zero R_{56} (unwanted side-effect of previous optimisation scans)

R_{56} in the transfer lines

The decrease in bunch length originates in non-zero R_{56} (unwanted side-effect of previous optimisation scans)
TL3 has already been optimised to have $R_{56} \sim 0$

R_{56} in the transfer lines

The decrease in bunch length originates in non-zero R_{56} (unwanted side-effect of previous optimisation scans)
TL3 has already been optimised to have $R_{56} \sim 0$
TL2 is next...

Optimisation techniques with particle losses

General technique

Optimisation is performed by changing optical strengths of some elements Placet2's API to Octave to access Nelder-Mead's downhill simplex algorithm

We Define element families (7-40) and minimize
$w_{1} \varepsilon_{x}+w_{2} \varepsilon_{y}+w_{3} T_{566}{ }^{*}$
Takes a lot of computing
 time and fine tuning

* In reality minimizing the error of a linear fit is more efficient

Emittance evaluation from a particle distribution

In multiple particle tracking we evaluate emittance as

$$
\varepsilon_{q}=\sqrt{\operatorname{det}\left(\left[\begin{array}{cc}
\operatorname{cov}(q, q) & \operatorname{cov}\left(q, q^{\prime}\right) \\
\operatorname{cov}\left(q^{\prime}, q\right) & \operatorname{cov}\left(q^{\prime}, q^{\prime}\right)
\end{array}\right]\right)}
$$

Emittance evaluation from a particle distribution

In multiple particle tracking we evaluate emittance as

$$
\varepsilon_{q}=\sqrt{\operatorname{det}\left(\left[\begin{array}{cc}
\operatorname{cov}(q, q) & \operatorname{cov}\left(q, q^{\prime}\right) \\
\operatorname{cov}\left(q^{\prime}, q\right) & \operatorname{cov}\left(q^{\prime}, q^{\prime}\right)
\end{array}\right]\right)}
$$

However, if particle losses are possible during optimisation, increasing particle loss will decrease the ε_{q} evaluation

Emittance evaluation from a particle distribution

In multiple particle tracking we evaluate emittance as

$$
\varepsilon_{q}=\sqrt{\operatorname{det}\left(\left[\begin{array}{cc}
\operatorname{cov}(q, q) & \operatorname{cov}\left(q, q^{\prime}\right) \\
\operatorname{cov}\left(q^{\prime}, q\right) & \operatorname{cov}\left(q^{\prime}, q^{\prime}\right)
\end{array}\right]\right)}
$$

However, if particle losses are possible during optimisation, increasing particle loss will decrease the ε_{q} evaluation

The optimisation scan will therefore "attempt" to lose more particles!

Emittance evaluation from a particle distribution

When 1st attempting to address this, we added a term to the merit function such that

$$
w_{1} \varepsilon_{x}+w_{2} \varepsilon_{y}+w_{3} T_{566}+W_{4} N_{\text {Losses }} ; \quad W_{4} \gg w_{i}
$$

Emittance evaluation from a particle distribution

When 1st attempting to address this, we added a term to the merit function such that

$$
w_{1} \varepsilon_{x}+w_{2} \varepsilon_{y}+w_{3} T_{566}+W_{4} N_{\text {Losses }} ; \quad W_{4} \gg w_{i}
$$

However Nelder-Mead's symplex is not very suitable for merit functions with very sudden changes in steepness. This makes it harder for optimisation scans to converge (we will see a plot in a bit)

Emittance evaluation from a particle distribution

When 1st attempting to address this, we added a term to the merit function such that

$$
w_{1} \varepsilon_{x}+w_{2} \varepsilon_{y}+w_{3} T_{566}+W_{4} N_{\text {Losses }} ; \quad W_{4} \gg w_{i}
$$

However Nelder-Mead's symplex is not very suitable for merit functions with very sudden changes in steepness. This makes it harder for optimisation scans to converge (we will see a plot in a bit)

We have therefore decided to remove the $N_{\text {Losses }}$ term and revise the way the merit function evaluates ε_{q}.
Instead of using the full distribution, we compute ε_{q} using a fixed number of macro particles (99% of the original distribution)

Emittance evaluation from a particle distribution

When 1st attempting to address this, we added a term to the merit function such that

$$
w_{1} \varepsilon_{x}+w_{2} \varepsilon_{y}+w_{3} T_{566}+W_{4} N_{\text {Losses }} ; \quad W_{4} \gg w_{i}
$$

However Nelder-Mead's symplex is not very suitable for merit functions with very sudden changes in steepness. This makes it harder for optimisation scans to converge (we will see a plot in a bit)

We have therefore decided to remove the $N_{\text {Losses }}$ term and revise the way the merit function evaluates ε_{q}.
Instead of using the full distribution, we compute ε_{q} using a fixed number of macro particles (99% of the original distribution)

This also provides a better fit to the particle distribution (since the bunch is not actually Gaussian at extraction)

Emittance evaluation from a particle distribution

Gaussian fit comparison

$b_{2.5}^{3.5}$ distribution

Conclusions and Outlook

Conclusions

- Placet2 has been updated to track individual tensor elements
- The main DBRC design challenges were identified and addressed
- With an injected beam of $50 \mu \mathrm{~m}$, the latest lattice has minimal $T_{566}(<60 \mathrm{~cm})$ while meting the emittance budget $\left(\varepsilon_{x}=117 \mu \mathrm{~m} ; \varepsilon_{y}=112 \mu \mathrm{~m}\right)$
- The transfer lines present some unwanted R_{56} ($\sim-7 \mathrm{~cm}$)
- Particle loss and long non-Gaussian tails are detrimental to the performance of our optimisation scans
- When losses are possible, estimating ε using 99% of the particle distribution improves the performance of optimisation scans
- It also provides a better fit for distributions with long tails

Outlook

- DBRC
- Remove R_{56} from TL2 (or update the final chicane)
- Implement the delay loop's short path
- Try to optimise for $\delta=1 \%$
- Implement misalignments and beam-based alignment techniques

Outlook

- DBRC
- Remove R_{56} from TL2 (or update the final chicane)
- Implement the delay loop's short path
- Try to optimise for $\delta=1 \%$
- Implement misalignments and beam-based alignment techniques
- Placet2
- Implement CSR (and update ISR)
- Implement decelerators
- Improve parallelization, LXplus support, etc...

Outlook

- DBRC
- Remove R_{56} from TL2 (or update the final chicane)
- Implement the delay loop's short path
- Try to optimise for $\delta=1 \%$
- Implement misalignments and beam-based alignment techniques
- Placet2
- Implement CSR (and update ISR)
- Implement decelerators
- Improve parallelization, LXplus support, etc...
- Full drive beam integration

The end

Thank you

Extra slides

Full drive beam integration (status)

Output:

$$
\begin{aligned}
& \varepsilon_{x} \leq 35 \mu \mathrm{~m} \\
& \varepsilon_{y} \leq 35 \mu \mathrm{~m} \\
& E=50 \mathrm{MeV} \\
& \delta=0.95 \%
\end{aligned}
$$

Full drive beam integration (status)

Output:

$$
\begin{aligned}
& \varepsilon_{x} \leq 35 \mu \mathrm{~m} \\
& \varepsilon_{y} \leq 35 \mu \mathrm{~m} \\
& E=50 \mathrm{MeV} \\
& \delta=0.95 \%
\end{aligned}
$$

* Thanks to Steffen Doebert and Shahin Hajari for the distributions

Full drive beam integration (status)

DBA

Input:

$$
\begin{aligned}
& \varepsilon_{q}=30 \mu \mathrm{~m} \\
& E=50 \mathrm{MeV} \\
& \delta=1 \%
\end{aligned}
$$

Gaussian

Full drive beam integration (status)

DBA

Input:

$$
\begin{aligned}
& \varepsilon_{q}=30 \mu \mathrm{~m} \\
& E=50 \mathrm{MeV} \\
& \delta=1 \%
\end{aligned}
$$

Gaussian
Output:

$$
\begin{aligned}
& \varepsilon_{q}=31 \mu \mathrm{~m} \\
& E=1.9 \mathrm{GeV} \\
& \delta=0.84 \%
\end{aligned}
$$

Full drive beam integration (status)

Input:

$\varepsilon_{q}=30 \mu \mathrm{~m}$
$E=50 \mathrm{MeV}$
$\delta=1 \%$

Gaussian
Output:

$$
\begin{aligned}
& \varepsilon_{q}=31 \mu \mathrm{~m} \\
& E=1.9 \mathrm{GeV} \\
& \delta=0.84 \%
\end{aligned}
$$

* Thanks to Avni Aksoy and Andrea Latina for the distribution

R_{56} before optimisation

* From Eduardo Marin's CLIC Workshop 2016

DBA simulation parameters

DBA simulation parameters:	
Initial energy (MeV)	50
Final energy (GeV)	1.9
Initial Energy Spread (\%)	1.0
Bunch Charge (nC)	8.4
Initial emittance ($\mu \mathrm{m})$	30
BPM resolution $(\mu \mathrm{m})$	10
Misalignment errors - Quad. and Acc. $(\mu \mathrm{m} \mathrm{rms})$	200
Pitch errors - Acc. $(\mu \mathrm{rad} \mathrm{rms})$	200

DBA simulations (WFS)

- Average final emittance: $\varepsilon_{x}=31 \mu \mathrm{~m}, \varepsilon_{y}=30 \mu \mathrm{~m}$
- Final energy spread of $0.836 \% \pm 0.004 \%$

CR1 Lattice

CR2 Lattice

