

Report Scintillator Detector WG

Davide Sgalaberna (CERN) for the SD WG, ND280 upgrade general meeting 21st February 2018

A. Blondel Proposed measurement in test beams

Priorities would be testing the response, electronics in B-field and tracking

Test beams

Prototype: 52 x 22 x 8 cm³ -> plan to instrument all the readout channels - about 10k cubes and 1736 readout channels

We will be able to instrument all the readout channels with Baby MIND electronics -> we will have the instruments to perform the measurements (Stefania's talk) ₃

- Two independent DAQ systems: WaveCatcher & BabyMIND (sFGD)
 - Synchronized via trigger signal from WaveCatcher
 - Data to be merged offline
- WaveCatcher system:
 - Coincidence between beam scintillator counters
 - PID via ToF + 2 signals from Cherenkov counters
 - Assurance for a single particle within 320 ns time window
- BabyMIND system: detector under study
 - Self-triggering system. WaveCatcher signal goes to one of channels
- The firmware of Baby MIND needs to be upgraded to get input signals from the WaveCatcher -> no more than 2-3 days work
- Discussions with Yannick ongoing to define the needed updates

<u>Trigger: WaveCatcher</u> S1 and S2 and S3 (8ch) S1 and S2 and S3 and S4 (10ch)

3

MPPCs for prototype

T. Matsubara

Required

20x50x10 cubes ··· 1700 ch (Full option)
 (ref. 20x30x8 cubes (Assembling now) ··· 1000 ch)

Available

- <u>S13081-050CS</u> ··· ~690 units
 - From WAGASCI for SMRD
 - 50 μ m pitch, <u>667 pixels</u>, 1.3 x 1.3 mm², Ceramic package, <u>V_{BR} = ~53 V</u>
- <u>S12571-025C</u> ··· ~200 units
 - From Baby-MIND
 - · 25 μ m pitch, <u>1600 pixels</u>, 1 x 1 mm², Ceramic package, <u>V_{BR} = ~65 V</u>

Buy new*? → Yokoyama-san is asking prices & delivery date to HAMAMATSU

(*) Exactly same types as above are not in catalog. Therefore, similar types below are candidates

- <u>S13360-1325CS</u>
 - · 25 μ m pitch, <u>2668 pixels</u>, 1.3 x 1.3 mm², Ceramic package, <u>V_{BR} = ~53 V</u>
- <u>12571-015C</u>
 - 15 μ m pitch, <u>4489 pixels</u>, 1 x 1 mm², Ceramic package, <u>V_{BR} = ~65 V</u>

4

• Yokoyama-san waiting for news from Hamamatsu

• May not have all MPPCs in time for June/July. Possibility to use WAGASCI ones

 If we want to test particles stopping power we can disposed the MPPCs in a smart way —> low # of pixels in upstream part of the detectors

Operation voltage?

• 50 μ m is not enough?

25 μ m pitch is desirable?

→ Can we mix those?

MPPCs for prototype

Design of the ceramic package

• Same external dimension between 1.3 x 1.3 mm² & 1 x 1 mm²

5

T. Matsubara

MPPCs for final SuperFGD T. Matsubara

- Surface mounting MPPCs are the favorite options for the final detector
- ~40% cheaper than other MPPC types
- Less material budget

- Latest version of MPPC <u>S13360-1350CS/PE</u>
 - Area: 1.3 x 1.3 mm²
 - Number of pixels: 667 pixels (50 μ m pitch)
 - (*) 25 μ m pitch with same package size is also available Compatible price is expected but need to confirm
 - Typical $V_{BR} = 53 V$
 - PDE: 40%
 - Dark count rate: 90-270 kHz
 - Cross-talk rate: 3%
 - Cost difference between 25 and 50 mum is not big -> 667 Vs 2668 pixels

1 NC 2 Cathode 3 Anode 4 NC 2 0.6 1.425 0.6

Tolerance unless otherwise noted: ±0.1

* Distance from chip center to package center

MPPCs for final SuperFGD T. Matsubara

- Choice of MPPC?
 - \rightarrow Surface-mount type is favored
- Design of MPPC-to-fiber interface
 - → Good interface w/ small space (PCB panel idea by Nakadaira-san)
- PSB design including cabling & FEE
 → Less noise, materials & cooing
- Access for equipments to be replaced
 - \rightarrow Capability to maintain (e.g. ASIC tip only?)
- 2D readout option to avoid top ch's ??
 - \rightarrow Big impact to mechanics
 - → Trade-off b/w cost & performance
- \cdot Timeline to have decision
 - → We have to start buying in 2018 JFY after fixing number of channels

Useful to use the prototype to test interfaces between MPPC / electronics / box TDR deadline is fall 2018 / beginning 2019 -> important to be ready with final design₈

Limited spaces

MPPCs for final SuperFGD T. Matsubara

Panel-like structure w/ similar pitch is found in LED screen

Baby MIND FE electronics and DAQ

Y. Favre

Baby MIND FE electronics and DAQ

Y. Favre

FEB v2 hardware: Bloc diagram

Y. Favre

- 400 MHz rate —> hit time = 2.5 ns (sampling time period)
- With a different FPGA 1.5 ns could be reached
- Below 1 ns may need a dedicated ASIC
- It may be possible to deal with <1ns time resolution on the single hit -> to test 12

• Differently from Baby MIND, in SuperFGD the FE must be on top of the detector

- layout need a new design, e.g. types of connectors etc.
- much higher power heating with 60k channels -> cooling system is critical
- in 0.2 T magnetic field

Test of Baby MIND electronics in B field ^{Y. Favre}

- Baby MIND electronics could be a good starting point for development
- Ferrite coils used in different DC/DC converters need to be tested in B-field
- Can already test it during test beams: can use single FEB
- For the SuperFGD FEB design, we'll have to address that:

- check if 0.2T is an issue with the current design: this can be checked with formulas & datasheet and tested during the test beam campaign

- if yes, see if we can orient the coils to be insensitive to the magnetic field
- if not possible, use LDOs instead (i.e. DC/DC linear converters without coils) providing low voltage (thus high current) to FEB and having more losses (LDO less efficient)

Good B-field

Width = 2.27 m (1 m) [0.22]Height = 1.59 m (0.3 m) [0.08]Length = 1.55 m (0.52 m) [0.52]

Make sure that all pieces (fibers included) can fit that space without any problem —> shouldn't be an issue

Plans for software

- We need to be prepared for the test beams in June/July
- Need to be ready with data taking and offline analysis
 - data unpacking and ROOT format
 - provide event displays during run time could be useful for tests
- Preliminary simulations with particle guns at different energies
 - look at truth level how many events interaction types we get
- Simulation of SuperFGD with lower # of channels
 - 2-views already shown at the workshop
 - studies with 2 cm³ cubes can be done in a couple of days
- Prepare software for detector response calibration

Conclusions

- 8 x 22 x 52 cubes (cm³) is being prepared @ INR \rightarrow 1736 channels.
- We have started the production to equipe the whole detector
 - Detector in construction at INR'
 - Contribution from CERN&UNIGE for electronics
 - MPPCs will be provided mainly from Japan
- We will be able to test
 - test time resolution, Baby MIND electronics in magnetic field,

detector response

- important answers for the future developments
- Next meeting planned on the 6th of March
- We will focus mainly on the planning for the June/July beam tests

BACKUP

Test beams

A. Blondel

Prototype: 52 x 22 x 8 cm³ —> plan to instrument all the readout channels - about 10k cubes and 1736 readout channels

"Photon" magnet (MDX) is available. "Tracking" magnet (MNP17) still pending Checking availability for June/July test beams With TPC need to check how much space left by magnet and residual field 18

Test beams

A. Korzenev

ToF and trigger system for the SuperFGD test-beam in June 2017

MNP17 magnet (laid with B vertical normally ... horizontal possibility?)

JperFGD test beam

DAQ system: WaveCatcher

- Technology employs a circular buffer based on arrays of switched capacitors (SCA)
- Sampling rate 0.4 3.2 GS/s, buffer 1024 cells, commercial ADC for charge digitization, dead time 120 us, rate below 1 kHz

Conclusions

- Test beams:
 - 25th June 11th July (SuperFGD)
 - 22nd August 5th September (TPC)
 - maybe possibility 22nd August 19th September (parasitic)

Width = 2.27 m (1 m)Height = 1.59 m (0.3 m)Length = 1.55 m (0.52 m)

> BL4S 2017 Setup 2017-09-08

example of set-up from last year using a magnet, and with another detector test upstream, there is 2.9m free space in front of the magnet

Range vs Momentum of protons in Polystyrene

 $\frac{1}{2}$ Maximum energy deposition in a single cell: ~30-45 MeV (22 MIPs = 880 pixels) Range of 500 MeV/c protons : 12cm Range of 800 MeV/c protons : 50cm

23

Baby MIND FE electronics and DAQ Y. Favre

