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Higgs potential

o Important to measure the shape of the Higgs potential
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Higgs boson pair production at the LHC

o SM Higgs boson pair production (gluon-gluon fusion - ggF):

1. the scale uncertainty, stemming from the missing higher order contributions and
estimated by varying the renormalization scale µR and the factorization scale µF

in the interval 1
2
µ0 ≤ µR, µF ≤ 2µ0 with some restrictions on the ratio µR/µF

depending on the process;

2. the PDF and related αs errors. The PDFs are non–perturbative quantities fitted
from the data and not calculated from QCD first principles. It is then compulsory
to estimate the impact of the uncertainties on this fit and on the value of the strong
coupling constant αs(M

2
Z) which is also fitted together with the PDFs;

3. in the case of the gluon fusion process there is a third source of uncertainties which
comes from the use of the effective field theory approximation to calculate the NLO
QCD corrections, where top loops are taken into account in the infinite top mass
approximation and bottom loops are neglected.

In the following we will present results for MH = 125 GeV. Note that the results for the
total cross sections and uncertainties are nearly the same for MH = 126 GeV. The total
cross sections at the LHC for the four classes of Higgs pair production processes are shown
in Fig. 7 as a function of the c.m. energy. For all processes the numerical uncertainties
are below the permille level and have been ignored. The central scales which have been
used are (µR = µF = µ0)
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Figure 7: The total cross sections for Higgs pair production at the LHC, including higher-
order corrections, in the main channels – gluon fusion (red/full), VBF (green/dashed),
Higgs-strahlung (blue/dotted), associated production with tt̄ (violet/dotted with small dots)
– as a function of the c.m. energy with MH = 125 GeV. The MSTW2008 PDF set has
been used and higher–order corrections are included as discussed in section 2.
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Small production cross-section:

σggF
SM = 33.41 fb at √s = 13 TeV
− two massive final state particles
− destructive interference

Phys. Rev. Lett. 117 (2016) 012001
10.23731/CYRM-2017-002 LHCHXSWGHH

o Potential non-resonant BSM enhancements
(new couplings, modified Yukawa and/or self-couplings)

o Benchmark BSM resonance
hypotheses:
o Randall-Sundrum graviton
G→ HH (spin=2)

o S → HH (spin=0)

3/41

Higgs boson self-couplingHiggs-fermion Yukawa coupling

arXiv:1212.5581

Resonant production

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.012001
https://cds.cern.ch/record/2227475/files/CERN-2017-002-M.pdf
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGHH
https://arxiv.org/abs/1212.5581
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SM Higgs boson pair production at the LHC

o SM HH-production ∼ 1000× smaller compared to H-production
o Current LHC dataset won’t be large enough to reach the sensitivity 4/41

arXiv:1712.08677

Single Higgs boson production

https://arxiv.org/abs/1712.08677
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Di-Higgs final states

Di-Higgs decay modes and relative
branching fractions:

bb WW ττ ZZ γγ

bb 33%

WW 25% 4.6%

ττ 7.4% 2.5% 0.39%

ZZ 3.1% 1.2% 0.34% 0.076%

γγ 0.26% 0.10% 0.029% 0.013% 0.0005%

Some of the most
sensitive channels:

HH → bb̄bb̄: the highest BR,
large multijet background

HH → bb̄τ+τ−:
relatively large BR, cleaner final state

HH → bb̄γγ:
small BR, clean signal extraction thanks
to a good γγ mass resolution

No golden channel! Important to
consider a large number of final
states!

5/41

10.23731/CYRM-2017-002

Some of the relevant Run-2 results:

ATLAS bb̄bb̄: arXiv:1804.06174
ATLAS bb̄τ+τ−: arXiv:1808.00336

ATLAS bb̄γγ: arXiv:1807.04873
ATLAS combination: ATLAS-CONF-2018-043
CMS combination: CMS-PAS-HIG-17-030

In this presentation, focusing on:
o bb̄τ+τ− analysis (SM + resonant HH search)
o bb̄τ+τ− κλ scan (included in the ATLAS HH combination)
o High-Luminosity LHC bb̄τ+τ− prospects (pub note draft ready)
o End of Run-2 prospects, Universal Fake Factor/Rate method

https://cds.cern.ch/record/2227475/files/CERN-2017-002-M.pdf
https://arxiv.org/abs/1804.06174
https://arxiv.org/abs/1808.00336
https://arxiv.org/abs/1807.04873
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2018-043/
https://cds.cern.ch/record/2628486?ln=en
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HH → bb̄τ+τ−

τlepτhad (BR: 45.8%) τhadτhad (BR: 41.9%)

6/41
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Event pre-selection

τlepτhad τhadτhad

Single lepton trigger Lepton tau trigger Single tau trigger Di-tau trigger
SLT LTT STT DTT

1 e/µ and 1 medium τ 2 medium τs
p
e/µ

T
> 25, 27 GeV 18 GeV < pe

T
<SLT threshold pleadτ

T
> 100, 140, 180 GeV pleadτ

T
> 40 GeV

(for 24, 26 GeV triggers) 15 GeV< p
µ
T
< SLT threshold (for 80, 125, 160 GeV triggers) psublτ

T
> 30 GeV

pτ
T
> 20 GeV pτ

T
> 30 GeV psublτ

T
> 20 GeV

≥ 2 central jets
pT > 45, 20 GeV pT > 80, 20 GeV pT > 45, 20 GeV pT > 80, 20 GeV

45, 20 GeV for 2015 data

mMMC
ττ > 60 GeV

7/41
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Signal/Control Regions
τlepτhad τhadτhad

Single lepton trigger Lepton tau trigger Single tau trigger Di-tau trigger
SLT LTT STT DTT

3 Signal Regions:
o Opposite charge of the
τ visible decay products

o 2 b-tagged jets

Control Regions:
o 0,1 b-tag
o Same charge
o High mW

T , Z + bb̄, ...

o A Boosted Decision Tree (BDT) classification is applied in the SR

8/41
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Boosted Decision Tree
o BDT used to separate signal from background
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τhadτhad shown here (equivalent for τlepτhad)

BDT

BDT Score - final discriminant

o Separate BDTs trained for each signal (and mass) hypothesis
o In resonant case the BDT is trained on the hypothesis + two
neighboring mass points.

o Dedicated BDT used for κλ scan.
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Analysis strategy
o A BDT score is used as a final discriminant:
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Top-quark background with true τs (MC), normalization from data
Jet → fake τhad
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Z+Heavy Flavor normalization
o Cross-section for Z +HF is not well described by Monte Carlo (Sherpa).
o Dedicated Z → µµ+ bb/bc/cc control region.
o Similar selection to the one in the Signal Region
(additionally: 81 < mµµ < 101 GeV).

o Normalization freely floated in the fit (one bin 2 b-tag region).
o For the SM fit (background only hypothesis): SF (Z+HF ) = 1.34± 0.16

11/41
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Combined Fake Factor Method
o Jets → fake τs background from tt̄, multijet and W+jets processes:

FF = N(τ)
N(anti-τ)

o parametrized in τ pT , #prong, trigger
o MC events with true τs subtracted
o calculated for each process in separate CRs

(Anti-τ : τ -ID requirement inverted: !Medium and τ -ID BDT score > 0.35)

multijet CR
tt̄ CR
W+jets CR

e/µ fail loose isolation WP, 0/1 b-tag region
mT (l,MET ) > 40 GeV, 2 b-tag region
mT (l,MET ) > 40 GeV, 0 b-tag region

o These are used to calculate a combined FF:

FFCOMB = FFQCD × rQCD + FFtt̄/W+jets × (1− rQCD)

where rQCD is the fraction of multijet events in the anti-τ signal region
QCD FFs calculated in the 1 b-tag region applied to 2 b-tag region due to low stats

12/41
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ABCD and Fake Rate Method
o Data-driven ABCD method used to estimate the multijet background:

(Anti-τ : !Medium and τ -ID
BDT score > 0.35)

FF = N(SS, τ)
N(SS, anti-τ) = B

D

A = FF×C

o 2D FFs (function of τ1, τ2 pT )
o Parametrized in #prong and trigger
o The differential FFs are derived in a 1 b-tag region
(overall normalization from the 2 b-tag region)

o Fake Rate method used to estimate jet → fake τ background from tt̄ :

FR = NpassID

N total

o Use τlepτhad tt̄ control region to derive FRs
o Binned in τ η and #prong
o Applied to all fake-taus in MC tt̄ events.

13/41
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Contributions

o Z+HF control region, extrapolation systematic uncertainties
o NLO 2HDM sample validation/production
o Signal theory uncertainties
o BDT acceptance studies
o Checks on the statistical analysis

14/41
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Non-resonant SM HH production - results
(bb̄τ+τ− result, other channels and the combination)

15/41

The combination is realized by constructing a combined likelihood function that
takes into account data, models and systematic uncertainties

Instrumental and luminosity uncertainties correlated across the channels

The acceptance and the background modeling uncertainties treated as uncorrelated

ATLAS-CONF-2018-043

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2018-043/
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SM HH production, combined result

0 10 20 30 40 50 60 70 80

ggF

SMσ HH) normalized to → (pp ggFσ95% CL upper limit on 

Combined

γγb b→HH

-τ+τb b→HH

bbb b→HH 12.9 20.7 18.5

12.6 14.6 11.9

20.4 26.3 25.1

6.7 10.4 9.2

Obs. Exp. Exp. stat.

Observed
Expected

σ 1±Expected 
σ 2±Expected 

ATLAS Preliminary
-1 = 13 TeV,  27.5 - 36.1 fbs

 HH) = 33.4 fb→ (pp ggF
SMσ

Run-1 ATLAS combination obs (exp): 70 (48) Phys. Rev. D 92, 092004 16/41

obs: 0.22 pb
exp: 0.35 pb

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.092004
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Trilinear Higgs self-coupling variations

17/41
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Varied trilinear Higgs self-coupling
HH production modified

(using scale factors: κt = gtt̄H/g
SM
tt̄H and κλ = λHHH/λ

SM
HHH)

A(κt, κλ) = κ2
tB + κtκλT

A(1, 0) = B A(1, 1) = B + T A(1, 2) = B + 2T
Express |B|2, |T |2 and (BT ∗ + TB∗) in terms of |A(1, 0)|2, |A(1, 1)|2 and |A(1, 2)|2,

which leads to:

|A(κt, κλ)|2 = a(κt, κλ)|A(1, 0)|2 + b(κt, κλ)|A(1, 1)|2 + c(κt, κλ)|A(1, 2)|2

Any (κt, κλ) combination at LO can be obtained
from a linear combination of some 3 (κt 6= 0, κλ) samples!

18/41
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Linear combination
o Showing generator level mHH for:
κλ = {0, 1, 2, 20}
(other parameters fixed to the SM)

o Different bases tested for linear
combination
(e.g. κλ = {0, 1, 2} vs κλ = {0, 1, 20})

o Remaining sample used for validation
(very good closure at generator level) 300 400 500 600 700 800 900 1000
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Trilinear Higgs self-coupling scan strategy
m
κλ=x
HH , for x = {−20,−19, ..., 20}, at generator level, at LO

obtained using the linear combination :

200 300 400 500 600 700 800 900
 [GeV]HHm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

3−10×

a.
u. ATLAS Simulation Work In Progress

= 13 TeVs

=-5λκ

200 300 400 500 600 700 800 900
 [GeV]HHm

0

2

4

6

8

10

12

14

16

18

6−10×

a.
u. ATLAS Simulation Work In Progress

= 13 TeVs

=2λκ

200 300 400 500 600 700 800 900
 [GeV]HHm

0

0.05

0.1

0.15

0.2

0.25

3−10×

a.
u. ATLAS Simulation Work In Progress

= 13 TeVs

=5λκ

200 300 400 500 600 700 800 900
 [GeV]HHm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

3−10×

a.
u. ATLAS Simulation Work In Progress

= 13 TeVs

=10λκ

Weights, binned in mHH , obtained as: mκλ=x
HH |bin i/m

κλ=1
HH |bin i

200 300 400 500 600 700
 [GeV]HHm

10

210

310

=
1

λκ H
H

/m
=

-5
λκ H
H

m

ATLAS Simulation Work In Progress
=13 TeVs

=-5λκ
=16.57=1λκσ/=-5λκσLO 

200 300 400 500 600 700
 [GeV]HHm

1−10

1

10

=
1

λκ H
H

/m
=

2
λκ H
H

m

ATLAS Simulation Work In Progress
=13 TeVs

=2λκ
=0.47=1λκσ/=2λκσLO 

200 300 400 500 600 700
 [GeV]HHm

1

10

210

310=
1

λκ H
H

/m
=

5
λκ H
H

m

ATLAS Simulation Work In Progress
=13 TeVs

=5λκ
=2.42=1λκσ/=5λκσLO 

200 300 400 500 600 700
 [GeV]HHm

1

10

210

310

=
1

λκ H
H

/m
=

10
λκ H
H

m

ATLAS Simulation Work In Progress
=13 TeVs

=10λκ
=17.46=1λκσ/=10λκσLO 

These weights are applied to the fully reconstructed NLO SM sample to obtain
any κλ point, assuming that the LO to NLO factorization does not depend on κλ
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Differences compared to the SM HH search

o Acceptance changes significantly as a
function of κλ

o A dedicated BDT, trained on κλ = 20
signal is used since it performs good
for all κλ points.
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Limits on the cross-section as a function of κλ
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Full systematic uncertainty vs data stat-only
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HH → bb̄τ+τ− HL-LHC prospects
extrapolation of the Run-2 result:

∫
Ldt = 36.1→

∫
Ldt = 3000 fb−1

Signal and background distributions scaled by f =
∫
Ldt|target/

∫
Ldt|current

Signal and background distributions scaled to 14 TeV cross-sections
Normalizations fixed to the best Run-2 fit values

Pixel TDR detector layout → improved b-tagging performance (8% per b-jet)
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Extrapolation strategy
o Normalizations fixed to best Run 2 fit values

- Z(→ ττ) + bb̄ scaled up by 1.34, uncertainty 12%
- tt̄ normalization unchanged, uncertainty 12%

o Signal and backgrounds scaled to 14 TeV cross-sections
o Assuming the same performance, analysis, triggers and +8% in b-tag efficiency

Considering 4 different scenarios:

1 current systematic uncertainties

2 current systematic uncertainties, MC statistical uncertainty neglected :
Fractional impact on ∆µ goes from 18% (Run-2) to 84% (HL-LHC)

3 Baseline :
12% unc on tt̄ and Z + bb̄ scaled down with lumi, V H scaled to 5%, tt̄H to 10%, all
cross-section uncertainties halved, MC statistical uncertainty neglected, stat unc for
data-driven bgds scaled to follow Poisson distribution

4 No systematic uncertainties
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Results of the extrapolation
o 3 signal regions: τlepτhad SLT, τlepτhad LTT, τhadτhad
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Results of the extrapolation
scenario −1σ expected limit +1σ significance
No systematic uncertainties 0.58 0.80 1.12 2.46σ
Baseline 0.71 0.99 1.12 2.08σ
MC statistical uncertainty neglected 0.85 1.18 1.64 1.74σ
Current systematic uncertainties 1.94 2.69 3.74 0.65σ

o Expected discovery significances
extrapolated as well

o In the baseline scenario the
expected significance is above 2σ
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Breakdown of the systematics - baseline
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Di-tau trigger studies
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Expected 95% CL upper limit on σ(pp→ HH)/σSM (without systematic uncertainties) as a
function of the leading and sub-leading τhad−vis minimum pT thresholds, using the (a)

nominal BDT classifier and (b) using the κλ = 20 BDT

o The loss in sensitivity is expected to be even more pronounced (the effect masked
by +80 GeV jet requirement)

o Sensitivity to the Higgs self-coupling is affected more by raising the pT thresholds
(softer pT spectrum), so the study is repeated for κλ = 20 BDT
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Limits on the cross-section as a function of κλ
o Allowed 95% CL κλ interval (background-only hypothesis: σHH = 0)
no systematic uncertainties: 1.4 < κλ < 6.3, baseline: 1.0 < κλ < 7.0
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Likelihood ratio test
We can determine allowed κλ interval also for assuming:

(left) no Higgs self-coupling (box diagram only, κλ = 0) and
(right) assuming SM di-Higgs (κλ = 1)

o Allowed 95% CL interval (κλ = 0)
no systematics: 1.2 < κλ < 1.6 U
6.3 < κλ < 8.7,
baseline: −1.6 < κλ < 2.1 U
5.8 < κλ < 9.5

o Allowed 95% CL κλ interval
(assuming SM signal, κλ = 1)
no systematics: −0.4 < κλ < 7.9
baseline: −0.8 < κλ < 8.7
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Universal Fake Factor/Rate method
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Introduction
o Jet→fake τ estimation in ATLAS done separately for different analyses.
o There are ongoing efforts to measure the Fake Factors (FF) and Fake Rates (FR)
centrally and to develop a centralized method that can be used by most of the
analyses.

General idea:
o Measure FFs/FRs in regions with different quark/gluon fractions
o Identify well separating variable(s). Estimate q/g fraction in data by fitting MC
templates.

o Provide a set of recommendations on which systematic uncertainties to consider
o Consider the impact of b- and c- in respect to light-jets.
o Provide generic tool for:
(1) measuring the q/g fraction in the analysis SR
(2) applying the centrally measured fake factors/rates.
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Jet WidthQuark/Gluon Fraction

Jets can be initiated by quarks or gluons
• Quark initiated jets are more τ -like
• Quark/gluon (q/g) fraction has impact on
fake rate and fake factor

• Well separating variable: jet width
• weighted average ∆R of all objects

within the jet

j =

∑
i ∆R ipi

T∑
i pi

T

arXiv:1106.3076v2
[hep-ph]19

O
ct

2011

Approach
• Conduct Template Fit to estimate q/g fraction in SR

• Find FF suitable for q/g fraction

Lino Gerlach 7 / 14
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Measuring quark/gluon fraction
Quark and gluon templates extracted from different MC processes.

Template Fits

Example: 50-70 GeV, SS, 3p
Dĳet region SCR W +jet region
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Fake Factor InterpolationFake Factor Interpolation

F =
#(quarks passing) + #(gluons passing)

#(quarks failing) + #(gluons failing)
=

Nqpq + Ngpg
Nq(1− pq) + Ng (1− pg )

=
q(Fq − Fg ) + Fg + FqFg

q(Fg − Fq) + 1 + Fq

Fake Factor Interpolation
1. Measure q1 and F1 in gluon

dominated region
2. Measure q2 and F2 in quark

dominated region
3. Measure qSR in SR and

interpolate

Lino Gerlach 8 / 14
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Z(→ µµ)+jets region
o A T&P analysis to measure FF/FR in Z → µµ+jets channel
o Clean region, easy to validate, small fraction of real τ leptons, dominated by
quark-initiated jets

o Important to consider the impact of τ -trigger decision in all regions

o 1 or 3 prong τ candidate required,
pT > 18 GeV

o Single muon trigger
o Leading muon pT > 27 GeV,
trigger matched

o Sub-leading muon pT > 20 GeV,
opposite electric charge

o Nτ candidates = 1, pT > 20 GeV,
Electron veto

o 81. < mµµ < 101. GeV, pµµT > 15. GeV
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Tau ID and trigger requirements
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Jet Width
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o Jet width templates for quark- and gluon-initiated jets
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Conclusion & Outlook

o Interesting Run-2 and HE-LHC prospects results from bb̄ττ analysis and
HH in general

o Working on the Universal FF/FR methods within the fake-τ task-force

o Ongoing efforts on including the 2017+2018 data within the bb̄ττ analysis

o Many analysis improvements under consideration

o Planned contributions: implementation of the universal FF/FR methods,
re-definition of the Signal/Control regions, statistical analysis, (κλ, κt) scans
at NLO, Effective Field Theory re-interpretations (shape benchmarks)

o Work on the boosted bb̄ττ with Christina/Myrto
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My many supervisors... (+Michel)

Thank you for your attention!
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SM HH production, combined results
o Most recent ATLAS and CMS combinations of di-Higgs searches
o bbττ proves to be one of the most sensitive channels
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2018-043/
https://cds.cern.ch/record/2628486?ln=en


Allowed intervals for κλ

Search channel Allowed κλ interval at 95% CL
obs. exp. exp. stat.

HH → bb̄bb̄ −10.9 – 20.1 −11.6 – 18.7 −9.9 – 16.4

HH → bb̄τ+τ− −7.3 – 15.7 −8.8 – 16.7 −7.8 – 15.4
HH → bb̄γγ −8.1 – 13.2 −8.2 – 13.2 −7.7 – 12.7
Combination −5.0 – 12.1 −5.8 – 12.0 −5.2 – 11.4
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Resonant HH production
(combination in the mass range: 260-1000 GeV)

Differences compared to the SM HH search:

bbγγ:
looser selection below 500 GeV

final discriminant: mγγjj

bb̄ττ :
dedicated BDTs

bb̄bb̄:
boosted analysis for signal masses > 800 GeV

(combined with the resolved)
Looking for two Higgs candidates, each composed of a single

large-R (1.0) jet with at least one b-tagged track jet associated to it
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Scalar resonance
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Randall-Sundrum graviton model
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HL-LHC HH combination
o Significance (no systematics, baseline):

ATLAS DRAFT

5 HH Combination563

Results based on the statistical combination of the HH ! bb̄bb̄, HH ! bb̄⌧⌧ and HH ! bb̄�� channels564

are discussed in the following.565

The combination of various channels is realised by constructing a combined likelihood function that takes566

into account data, models and correlated systematic uncertainties from all channels. This is done within567

a statistical analysis package based on R��F�� [49] in combination with R��S���� [50]. Due to the very568

di�erent event selection criteria applied in these analyses the overlap between samples is negligible and569

does not need to be considered.570

Setting appropriate nuisance parameters (NPs) to be correlated with one another induced a negligible571

change in the combination results compared to assuming all nuisance parameters were uncorrelated.572

Accordingly, only those nuisance parameters relating to Run-2 detector performance are correlated between573

the HH ! bb̄bb̄ and HH ! bb̄⌧⌧ channels in the following results. Figure 16 shows the impact of574

the nuisance parameters on the fitted signal strength, along with the fitted value and uncertainties of the575

NPs relative to pre-fit. There are 120 nuisance parameters included in the statistical analysis. No strong576

correlations between any of these nuisance parameters are found by the fits, with the exception of some577

correlation (| ⇠ 0.35|) between background-modelling NPs in the HH ! bb̄bb̄ analysis and between578

background-modelling NPs in the HH ! bb̄⌧⌧ analysis. These correlations were also observed in the579

individual analyses.580

Table 8 shows the significance found in the individual channels as well as the combination.

Statistical-only All Systematics
Channel p0 Significance p0 Significance

hh ! bbbb 0.0825 1.39 0.271 0.609
hh ! bb⌧⌧ 0.00686 2.46 0.0164 2.13
hh ! bb�� 0.0180 2.10 0.0210 2.03

combined 0.000202 3.54 0.00197 3.02

Table 8: Significance of the individual hh ! bbbb, hh ! bb⌧⌧ and hh ! bb�� channels as well as their
combination.

581

With 3000 fb�1 of data, a SM Higgs boson pair production signal could yield a significance of 3.0�.582

The combined sensitivity of the three analyses to �HHH was assessed by generating an Asimov dataset583

containing the backgrounds plus SM signal. The ratio of the negative natural logarithm of the maximum584

likelihood fit for �HHH to that for the fit with �SM
HHH

was calculated. This is shown in Figure 5. From585

these curves, it can be seen that the 68% confidence interval (C.I.) for �HHH is 0.4  �HHH/�
SM

HHH
586

1.7 from the statistical-only fits, with the 95% C.I. being �0.10  �HHH/�
SM

HHH
 2.7 [ 5.5 587

�HHH/�
SM

HHH
 6.9. For the fits with current experimental systematic uncertainties, the 68% C.I. is588

0.25  �HHH/�
SM

HHH
 1.9 and the 95% C.I. is �0.4  �HHH/�

SM

HHH
 7.3.589

The significance with which the Higgs boson pair production would be observed is shown as a function590

of �HHH /�SM
HHH

.591

19th September 2018 – 23:54 28

o Significance as a function of κλ (no systematics, baseline):
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HL-LHC HH combination
o Limits on the κλ, assuming SM signal (no systematics, baseline):
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o Confidence intervals on κλ from the combination (no systematics):
− 68%: 0.4 < κλ < 1.7
− 95%: −0.1 < κλ < 2.7 U 5.5 < κλ < 6.9

o Confidence intervals on κλ from the combination (with systematics):
− 68%: 0.3 < κλ < 1.9
− 95%: −0.4 < κλ < 3.6 U 4.5 < κλ < 7.3

49/41



HE-LHC bbtautau prospects
o The discovery significance is expected to be 8.2σ
o The allowed range at 68% (95%) CL for κλ with 15 ab−1 of √s = 27 TeV data is
expected to be 0.8<κλ<1.2 (0.6<κλ<1.4) - assuming SM signal
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