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Klystrons - Overview
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(*) Adapted from Sprehn D. et al, Performance of a 150-MW S-Band Klystron, AIP. 
Conf. Proc. 337, 1995, p. 44
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Typical arrangement of a high-power klystron



• Electrons emitted from the gun are characterized by a 7D distribution function
that corresponds to a statistical mean of repartition of e- in phase space

• Properties:

 Electronic density given by

 Mean velocity verifies

 Distribution function evolves according to the relativistic Vlasov equation:

 Charge and current densities, , 
sources terms for Maxwell’s equations

Distribution function and Vlasov equation
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• Approximation of the distribution function for point-charge macroparticles:

where is the number of e- per macroparticle
• With the macroparticles charge = − , the particle density and the charge

and current densities and current are then:

• Define linear charge and current densities:

Macroparticles and reduction to 1D
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• Model assumptions:
 Electron flow confined to longitudinal direction by infinite longitudinal focusing

magnetic field propagating along drift tube of radius 
i.e. neglects any transverse motion

 Beam current low enough to neglect beam self-magnetic field
 Beam radius constant along the longitudinal direction

• Taking the moments of the relativistic Vlasov equation with the approximated
distribution function, it can be shown that the motion of the macroparticles is
ruled by the equations of motion:

corresponds to the rf cavity fields,          
is the averaged space-charge field induced by all macroparticles

, mass of a macroparticle such that: 

Macroparticles equations of motion
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• Unbunched e- beam propagates at the velocity and RF signal to be amplified
has frequency .

• Normalization of distances to i.e. new longitudinal coordinate: 

• Normalization of times to RF period =

• Define particles charge by: where , is the number of

• Normalization of the velocities to :

• Normalization of the RF cavity e-fields: where is
the cavity instantaneous voltage normalized to the depressed gun voltage
and is the normalized cavity profile along the axis i.e.: 

Normalizations, particles charge and RF e-field
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particles per RF cycle when there is no bunching and is the beam current



• Normalization of the linear electronic density:

• Normalization of the linear charge density:

• Normalization of the current density:

• Knowing the Green’s function ,  of a unit-charged source disk of radius 
confined in a cylindrical tube of radius , the normalized space-charge e-field is:

with , , 

being the normalized drift tube radius.

Normalizations and space-charge e-field
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• Discretization of the klystron interaction space:

• Cell edges and centers: and , 
• So far, each macroparticles is considered as a point charge. To define the linear 

charge at any , one replaces the Dirac distribution by integrable shape functions
so that:

• Choice of : 1st order B-spline

Spatial discretization and particle shape
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• Let the particles positions be known at = ( ) with = ( − 1)Δ
• Deposition of particles charge at cell centers and at times leads to cell-

averaged charge density:

where ∆ is the 2nd order B-spline:

with - general spline properties:

Charge projection to 1D numerical grid
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• Choice: computation of current density at cell edges and at times ⁄

• Let the particles velocities be known at ⁄ = ( ⁄ )
• By computing the densities of current as:

the continuity equation discretized as
is enforced

Charge conserving current deposition principle
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• Depending on initial position and velocity ⁄ , there are no, 1 or 2 cell
borders crossed by 1 particule during one Δ  , each associated with different 
currents

Charge conserving current deposition example
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Grid e-fields, back-interpolation, and leap-frog
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• Space-charge e-field on numerical grid at obtained by solving convolution
integral with density of charge

• RF e-fields on numerical grid at calculated from tabulated normalized cavity
fields and computation of the induced voltage

• E-fields acting on each particles computed by interpolating e-fields on grid at 
locations of particles:

• Normalized equations of motions:

discretized in time with the classical leap-frog scheme: 
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Cavity model - General
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• Klystron cavities modeled by parallel RLC circuit the current source being induced
by e-beam current

• Input cavity sources: current generator and unbunched incoming e-beam (beam-
loading)

• Output cavity terminated by matched load current-driven by bunched e-beam

Idler cavities
Output cavity

Input cavity

e-beam



Cavity model – System of differential equations
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• Time-dependent cavity voltage and inductance current ruled by:

or, functions of cavity RF parameters, with

• With normalized cavity voltage  and currents normalized to :

with:
, and , being the static beam admittance
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Convergence acceleration
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• To accelerate the convergence to steady state, change the transient behavior of
the above system. Set replacement system:

Steady-state of initial system given by: and

• Choosing  ( ) and ( ) - or the eigenvalues of - and defining the complex
quantity: 

the constraints on ’s and ’s for the steady-state of the replacement system to
be identical to the original one are: 
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Final replacement system and leap-frog
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• The above system is solved to obtain real and

• For each cavity, voltage and current solved with the leap-frog scheme:

• Induced current in cavity defined as:

with ⁄ normalized cavity e-field at 

• Current generator normalized to the beam current chosen as a sin time-
domain variation and an amplitude function of input power
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SLAC 5045 S-band klystron input data
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Cavity No. Cavity frequency 
(MHz)

(∗∗) ⁄
Ω

Gap length
(mm)

(**) Drift length
(cm)

1 2860 58.2 2000 175 6.76 0.726 -

2 2855 75.1 2000 - 7.19 0.725 5.55

3 2877 68.3 2000 - 8.36 0.717 5.55

4 2887 79.6 2000 - 11.18 0.703 5.55

5 2935 89.4 2000 - 12.01 0.690 28.53

6 2852 96.9 2000 16.5 16.59 0.648 10.36

Operating frequency 
(MHz)

Beam voltage
(kV)

Beam current
(A)

Beam radius 
(cm)

Drift radius
(cm)

2856 320 362 1.10 1.59

(*)

(*)

(*) from A. Jensen with AJDISK, priv.com. Jan. 2012 (**) at radius 0.707
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Cavity 1

SLAC 5045 klystron numerical experiment
(no space charge)
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Cavity 3

Cavity 2
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Cavity 5

Cavity 4
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Cavity 6

Beam current harmonics



SLAC 5045 klystron numerical experiment
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Charge conservation check
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