ARIES Workshop on Energy Efficient RF Ångström Laboratory, Uppsala, 18-20 June 2019

ESRF Experience with <u>Solid State Amplifiers and Combiners</u>

Jörn Jacob on behalf of ESRF RF Group

ESRF

ESRF: FIRST 3rd GENERATION, BECOMES 4th GENERATION LIGHT SOURCE

= 844 m

Circ

Existing Storage Ring

1992:commissioning1994:external userssince then:

- many upgrades
- brilliance increase by about a factor 1000

6 GeV Storage Ring 200 mA

Up to 100 keV X-ra

New Extremely Brilliant Source: EBS

Further brilliance increase by a factor 1002019: installation well advanced, start up in Dec.2020: commissioning and resume user service

RF LAYOUT → UNTIL DECEMBER 2018

EBS RF SYSTEM LAYOUT - START UP DECEMBER 2019

150 kW – 352 MHz SSA AT ESRF

Pair of transistors in push-pull (BLF578 from NXP, now produced by Ampleon)

650 W RF module → DC to RF: η = 68 to 70 %

75 kW coaxial power combiner tree

- Tolerates failures: no trip even at maximum power with up to 6 faulty modules
- \Rightarrow High redundancy

150 kW - 352.2 MHz SSA

DC to RF: η = 58 %, G = 63.3 dB at P_{nom}

- 7 such SSAs in operation at the ESRF!
- Initially developed by SOLEIL
- Transfer of technology to ELTA / AREVA
- RF modules & coaxial lines built by BBEF (PRC)
 The European Synchrotron

SSA versus KLYSTRON – TRIP RATE

Including auxiliaries and Power supplies

KLYSTRON average failure: 4 trips / year

SSA average failure: 0.9 trips/ year

 When a klystron begins to be sick it can generate several beam interruptions in a short time lapse

OPERATION EXPERIENCE WITH 7 x 150 kW SSA

- Booster \rightarrow 4 x 150 kW SSA, since January 2012 (6,400 hr), Top-up since April 2016
- SR \rightarrow 3 x 150 kW SSA, since October 2013 (32,000 hr), 1 stopped after a few months due to cavity
- So far not a single transistor failure !
- Nominal Power Efficiency DC \rightarrow RF: 58%, Gain 63.3 dB No variation in time detected so far

Component	Event count	Disturb Operation ?	Comment
HPA 650W (filter)	SR 22 SY 9	No No	CMS filters stressed when soldering on the PCB. Youth problem, now fixed with time. Last failure: February 2018.
DC/DC Converter 280V/50V	SR 12 SY 3	No No	Primary filter capacitors (C12 & C24).
Pre-Driver	SR 0 SY 5	Yes 1	Conception problems, which have been fixed: Gain loss, bad soldering, bad logic circuitry
MUXBOX Control Interface	SR 3 SY 4	Yes 3 No	The SSA trips when the fuse blows because the relays for cooling interlocks are fed by this interface. <i>This is a weakness of the system, which can be improved.</i>
Water Cooling	SR 1 SY 2	No Yes 1	Fortunately it happened outside of machine operation
TOTAL	SR 38 SY 23	3 2	1 in 2014 + 1 in 2015 + 1 in 2016 → Beam loss 2 in 2012 → Refill postponed

SSA: 650 W - HPA Failures

Year	SY	SR	Total
2012	1		1
2013	3	3	6
2014	2	7	9
2015	3	4	7
2016	0	3	3
2017	0	4	4
2018	0	1	1

Average 5 HPA failures per year for a total of 1820 HPA (128+2 / tower)

ELTA/SOLEIL SSA TESTS - OVERDRIVE

Avoid overdrive conditions

- > High peak drain voltage can damage the transistor [according to NXP]
- Explains gain and efficiency degradation observed on first 75 kW tower under test at the ESRF, according to ELTA *)
- Taken into account by ELTA for the fabrication of the 2nd batch of 3 x 150 kW SSA for the ESRF storage ring:
 - No degradation observed after 3500 hours of fatigue test with 8 amplifier modules at maximum power *)
 - Paid with 1 to 2 % less efficiency of the RF modules and about 1 % less efficiency at nominal power for a complete SSA

Short pulses (20 μs)

- ➤ Transient gain increase up to ≈1.3 dB
- Risk of overdrive
- \Rightarrow Overdrive protection needs to be adjusted carefully

ELTA/SOLEIL SSA TESTS – GAIN MODULATION FOR MISMATCHED LOAD

Measurement with constant RF input power level, giving 150 kW on matched load:

⇒ ± 20 kW on FwPw, i.e. gain modulation

- Partially intrinsic to non directive coaxial combiner tree (confirmed by simulation)
- Partially due to imperfect circulators on RF modules:
 - \Rightarrow modulation of load impedance
 - \Rightarrow RF module gain modulation

Specification:

- SWR = $3.7 \rightarrow P_{refl} / P_{fwd} = 50 \text{ kW} / 150 \text{ kW}$, all phases ($\cong EH - tuner$)
- Full reflection at all phases specified and tested for 80 kW (movable short circuit)

Test results:

- Reflected power well absorbed by circulator loads on RF modules
- > Despite one circulator per RF module: gain modulation
- ➤ ⇒ for some phases: SWR=3.7 test limited to 140 kW and short circuit test limited to 60 kW by overdrive protection
 The European Synchrotron

ELTA/SOLEIL SSA TESTS – OVERLOAD OF UNPOWERED RF MODULES

- SWR = 3.7 (Spec) \rightarrow P_{refl} / P_{fwd} = 50 kW / 150 kW, all phases (\Im EH tuner)
 - Operation with up to 6 unpowered modules (redundancy in case of defect)
 - > But: overpower on circulator load depending on phase of mismatch: up to 1700 W

Adjusting the length of the 2nd stage in the combiner tree by +170 mm Limit of peak reverse power to 1200 W = capacity of circulator load

TRANSIENT REFLECTIONS FOR PULSED CAVITY CONDITIONING

- ESRF SSPA from ELTA tested with 20 μ s /150 kW pulses at full reflection (spec)
 - \Rightarrow Fast interlock for P_{refl} > 150 kW
 - \Rightarrow Interlock on low pass filtered signal for P_{refl} > 50 kW (spec)

RF AMPLIFIER MODULE: ESRF IN HOUSE DEVELOPMENT

Motorola patent

ESRF fully planer design:

- Printed circuit baluns
- RF drain chokes replaced with "quarter wave" transmission lines.
- Very few components left, all of them SMD and prone to automated manufacturing
- \Rightarrow Reduced fabrication costs

18 modules incl. output circulator	Average Gain	Average Efficiency
at $P_{RF}^{out} = 400 \text{ W}$	20.6 dB	50.8 %
at $P_{RF}^{out} = 700 \text{ W}$	20.0 dB	64.1 %

[M. Langlois, ESRF]

The European Synchrotron

WILKINSON SPLITTER FOR THE RF DRIVE DISTRIBUTION

Resistors absorb differential signals without perturbing the common mode, thereby decoupling the connected outputs from each other

Water cooled wing with 6 RF modules, developed at ESRF

The European Synchrotron

[M. Langlois, ESRF]

ESRF DESIGN USING A CAVITY COMBINER *

H field

E field

Homogenous magnetic coupling of all **input loops**

Strong capacitive coupling to **the output waveguide**

Strongly loaded E₀₁₀ resonance

- Modest field strength
- Cavity at atmospheric pressure
- 1 dB Bandwidth $\approx 0.5 \dots 1$ MHz

For 352.2 MHz ESRF application:

 6 rows x 22 Columns x 700 W per transistor module

 \Rightarrow **85 kW** nominal

More compact than coaxial combiners

 $\mathcal{B}_{waveguide} \approx n_{module} \times \mathcal{B}_{module} >> 1$

- Easy to tune if *n_{module}* is varied
- Substantial reduction of losses \Rightarrow higher η

* Received funding from the EU as work package WP7 of the FP7/ ESRFI/CRISP project

ESRF DESIGN USING A CAVITY COMBINER

Direct coupling of RF modules to the cavity combiner:

- No coaxial RF power line
- Very few, sound connections
- 6 RF modules are supported by a water cooled "wing"
- The end plate of the wing is part of the cavity wall with built on coupling loops
- One collective shielding per wing
- Less than half the size of a 75 kW tower with coaxial combiner tree

ARIES Workshop on high efficiency RF - Ångström Lab, Uppsala - 18-20 June 2019 - Jörn Jacob Page 17

[M. Langlois, ESRF]

DC POWER REQUIREMENT FOR ESRF 150 KW SSPA FROM ELTA

ESRF

DC SUPPLY OF 4x 150 KW SSPA ON ESRF BOOSTER

DC SUPPLIES WITH INCREASED EFFICIENCY, MODULARITY AND REDUNDANCY

ESRF 352 MHz - 85 kW SSPA:

- Direct 400 Vac / 50 Vdc converters from EEI
 - \Rightarrow Higher efficiency than 2 stages
 - OK for CW, but antiflicker capacitances for pulsed operation 6x higher at 50 Vdc
- One 160 A / 8 kW PS per wing = 6 RF modules
 - \Rightarrow Redundancy: can tolerate 1 PS failure at P_{nom} without tripping the SSPA

Recent SOLEIL developments:

- Highly efficient (η = 96 %), modular 2 kW 240
 Vac / 50 Vdc converters, feeding 50 Vdc busses
 - \Rightarrow High redundancy, tolerates converter failures
- Remote voltage control: allows optimising SSPA efficiency for large range of output power:

 $\Rightarrow\eta_{\text{RF/AC}}$ = 56 % at P_max $\,$ and 50 % at $^{1\!\!/_2}$ P_max $\,$

 $\Rightarrow\,$ Architecture changed from tower to cabinet

Example:

500 MHz -80 kW SSPA at SESAME:

- 1st one built by SOLEIL
- 2nd- 4th under SOLEIL licence by Sigmaphi Electronics

[P. Marchand, SOLEIL]

```
The European Synchrotron ESR
```

Thank you !!!

-