Time-based Reconstruction of Hyperons at the PANDA Experiment at FAIR

Jenny Regina

Uppsala University

Department of Physics and Astronomy

21/06-2018 Uppsala

Outline

- Hyperons
- The PANDA Detector
- Investigations of detector signatures
 - $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$
 - $\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$
 - $\bar{p}p \rightarrow \bar{\Omega}^+ \Omega^-$
- SttCellTrackFinder
- Time based simulation
- Summary
- Future Plans

Hyperons

Baryons with at least one light quark replaced by an s or c quark

Hyperon	cτ [cm]	Mass [GeV/c^2]	Main decay
			and branching ratio
Λ (uds)	8.0	1.116	$p\pi^-$ 64%
Ξ^- (dss)	4.9	1.321	$\Lambda\pi^-$ 100%
Ω^{-} (sss)	2.5	1.672	ΛK^- 68%

- Relatively long lifetime
 - $\rightarrow\,$ Can travel far before decaying
- Provide a possibility for testing role of spin in creation of strangeness
- Scarce ammount of data for multi strange hyperons
- → Need more data!

PANDA at FAIR

- PANDA (anti-Proton ANnihilation at DArmstadt): multipurpouse detector
 - proton target
 - creation of states with all quantum numbers possible
 - hyperons created in particle-antiparticle pairs
 - reconstruction of both particle and antiparticle possible

Software Trigger

- Signal and background very similar
 - hardware trigger undesirable
- Interaction rate: 20 MHz
 - 200 GB of data/s
- Events filtered using information from tracking, calorimetry and PID

PANDA Detector

Straw Tube Tracker of PANDA Set of single channel drift tubes

- 4,636 straws planned
- 27 radial layers (green)
- 8 central layers consist of tilted tubes (±3°) (red and blue) for transversal
- Internal radius: 15 cm
- External radius: 42 cm
- Length of tubes: 150 cm

 $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$, Previous Measurements

$ar{p}p ightarrow ar{\Lambda} \Lambda$

- $\sigma = 64 \ \mu b$ at $p_{beam} = 1.64$ GeV
- Studies performed for p_{beam} =1.64 GeV, 7 GeV and 15 GeV
- Λ and Λ
 neutral, need to be identified from decay products
- Forward peaking distribution in CM frame
- $\bar{\Lambda}$ forward boosted in lab frame
 - decay products from $\bar{\Lambda}$ can be tracked in forward spectrometer
- $\bullet~\Lambda$ decays close to at rest
 - tracking low energy decay products from Λ in target spectrometer a challenge
- Λ crucial for reconstruction of heavier strange hyperons

$ar{p}p ightarrow ar{\Xi}^+ \Xi^-$

- $\sigma \sim 2 \ \mu b$ at $p_{beam}{=}4$ GeV
- Studies performed for *p_{beam}*=4.6 GeV
- PANDA will be first to measure angular distribution
- Isotropic distribution used for simulations
 - Behaviour of Ξ⁺ and Ξ[−] symmetric
 - $\bullet\,$ Comparison with Λ interesting

$ar{p} p ightarrow ar{\Omega}^+ \Omega^-$

- No experimentally measured cross section so far
 - \rightarrow PANDA expected to be first!
- No good prediction for cross section
- Studies performed for $p_{beam} = 5$ GeV and 15 GeV
- Isotropic distribution used for simulations
 - Behaviour of $\bar{\Omega}^+$ and Ω^- symmetric

Investigations of Detector Signatures

Motivation:

DyTER (Dynamic Track and Event Reconstruction)

- Modular and dynamic approach
- Needs to be as general as possible but work well for hyperons

- Usefulness of target spectrometer tracking detectors have been investigated
- $\bar{p}p \to \bar{\Lambda}\Lambda$, $\bar{p}p \to \bar{\Xi}^+ \Xi^-$, $\bar{p}p \to \bar{\Omega}^+ \Omega^-$
 - Behaviour of decay products in the detector have been investigated

Investigations of Detector Signatures

- Number of hits in tracking detectors
- Reconstructed tracks
 - $\bullet~$ Need \geq 4 detector hits for 3D helix fit
- Overlap between different detectors
- Challenging tracks
 - Tracks with too few hits
 - Tracks with many hits
- Number of reconstructed tracks per event
 - How many reconstructible events?
- Possibility of obtaining t_0 from barrel ToF

Investigations of Detector Signatures

- Studies performed for different detector setups
- These studies also guides detector development
- Similar studies have been performed for the forward spectrometer

SttCellTrackFinder

J. Schumann

- Cellular Automaton clustering
- Riemann Fit track parameters

2

2

6

6

2

2

6

6

- A Tracks traverse STT
- B Hit straws are numbered
- C Unambiguous hits are iteratively renumbered until hits in one cluster have same number
- D Ambiguous hits are give all numbers possible

Tracklets need to have at least 3 hits

SttCellTrackFinder for Hyperons

Why?

- Secondary track finder
 - ightarrow does not assume track originate from IP
- $\bullet \ \ \mbox{Hyperon event} \rightarrow \mbox{displaced vertex}$
- Most hyperon decay vertices will occur within range of STT
- STT good starting point for tracking
- Efficiency for hyperon events have been evaluated event based and show promising results

Time Based Reconstruction

Time Based Reconstruction, DPM

Left:

- 200 ns time window
- Tracks well separated

Right:

- 2,000 ns time window
- Event mixing
- Overlap between tracks

MVD

- Include MVD hits in tracking
- Use distance from projections of MVD hits in xy-plane to Riemann track
- Riemann track object: circular at z=0

Add best hit from each barrel layer to track

- Disks not taken into account at the moment
- Presently, one hit can be added to several tracks
- One track can at most have 4 hits assigned to it
- Introduce cut on d

- Distance, *d*, between MVD hits in one barrel layer and POCA of all tracks calculated
- Hit with smallest *d* is added to track

- Distance, *d*, between MVD hits in one barrel layer and POCA of all tracks calculated
- Hit with smallest *d* is added to track

- Distance, *d*, between MVD hits in one barrel layer and POCA of all tracks calculated
- Hit with smallest *d* is added to track

Summary

- Hyperons interesting to study spin observables
 - Could help discriminate between quark-gluon and hadron picture
- PANDA offers unique possibilities for tracking and reconstructing hyperons
- Due to relatively long lifetimes, displaced vertices pose a challenge for reconstructing hyperons
- Detector signatures for hyperon events have been investigated for different detector setups
 - Developed procedure for this using the tools available
 - Internal note on this under correction
- Time clustering have been implemented in the SttCellTrackFinder
- Work on including MVD hits in tracking algorithm ongoing

Future Plans

Near future, 2018-2019

- Look into and test other tracking algorithms and track propagators
- Include barrel ToF hits for event building
- Include GEM hits in tracking
- Evaluate efficiencies at different stages of development
 - Work on standardized tool for evaluating time-based efficiency
- Plans to incorporate machine learning in tracking at PANDA

Long term plans, 2020-2021 (may be subjected to change)

- One or both of following:
 - Test tracking algorithms with PANDA forward trackers at HADES
 - Hyperon analysis with HADES data
- Writing thesis

Thank You!

Straw Tube Tracker of PANDA

SttCellTrackFinder

Points to be fitted

Add z-dimension

Map onto paraboloid

Calculation of plane through 3D points simple eigenvalue determination