

Time-based reconstruction of hyperons at the PANDA experiment at FAIR

Karin Schönning Start seminar of Jenny Regina Uppsala, June 21st, 2018

Outline

- Prologue
- Why hyperons?
- Hyperon physics with PANDA
- Challenges with hyperons
- PANDA@HADES
- Summary and outlook

Missing in the Standard Model of particle physics: A complete understanding of the strong interaction.

- Short distances / high energies: pQCD rigorously and successfully tested.
- Charm scale and below: pQCD fails, no analytical solution possible.

Many fundamental puzzles manifest in the nucleon:

- Discovered a century ago.
- Still, we don't understand
 - Its abundance
 - Its mass
 - Its spin
 - It radius
 - Its inner structure

Abundance: matter-antimatter / nucleon-antinucleon asymmetry of the Universe.

Equal amounts in Big Bang (?) \rightarrow Where did the anti-nucleons go?

Baryogenesis*: possible if

- Baryon number violation
- CP violation
- Processes outside thermal equilibrium.

Picture from Virginia Tech $_{\rm 5}$

*A. D. Sakharov, JETP 5 (1967) 24-27

Mass:

• Summing quark masses: 1% of total proton mass.

 \rightarrow 99% of the visible mass in the Universe is dynamically generated by the strong interaction! But how?

Spin:

- Valence quark spin only cause ~1/2 of the total nucleon spin*.
- Proposed solution to *spin crisis:*
 - Sea quarks?
 - Gluons?
 - Relative angular momentum?

*C. A. Aidala et al., RMP 85 (2013) 655-691.

Radius: measured in

- Electron-nucleon scattering
- Electronic hydrogen spectrum
- Muonic hydrogen spectrum.

Results disagree.*

Inner structure:

 Neutron charge distribution intruguing.**

*R. Pohl, *Nature* 466 (2010)7303, 213-216. ** G. A. Miller, PRL 99 (2007) 112001.

Approaches

When you don't understand a system, you can*

- Scatter on it
- Excite it
- Replace one of the building blocks

*C. Granados *et al.*, EPJA 53 (2017)⁹117

Why hyperons?

What happens if we replace one of the light quarks in the proton with one - or many heavier quark(s)?

UNIVERSITET

Why hyperons?

- Systems with strangeness
 - − Scale: $m_s \approx 100 \text{ MeV} \sim \Lambda_{\text{QCD}} \approx 200 \text{ MeV}$.
 - Relevant degrees of freedom?
 - Probes QCD in the confinement domain.
- Systems with charm
 - Scale: m_c ≈ 1300 MeV.
 - Quarks and gluons more relevant.
 - Probes QCD just below pQCD.

Why hyperons?

Traceable spin:

Polarization experimentally accessible by the weak, parity violating decay:

Example: Angular distribution of $\Lambda \rightarrow p\pi^{-}$ decay

$$I(\cos\theta_{\rm p}) = N(1 + \alpha P_{\Lambda} \cos\theta_{\rm p})$$

 P_{Λ} : polarisation

 α = 0.64 asymmetry parameter

Hyperon Physics with PANDA

PANDA Topic **Key questions** Hyperon production Nucleon mass Hyperon Nucleon spin spectroscopy Hyperons as Nucleon structure diagnostic tool Hyperon structure Matter-antimatter asymmetry

Hyperon decays

Hyperon production in $\bar{p}p$ annihilations

- Mainly single-strange data.
- Scarce data bank above 4 GeV.
- No data on Ω or Λ_c .

T. Johansson, AIP Conf. Proc. of LEAP 2003, p. 95.

Spin observables sensitive to the interaction process.

- Prediction for $e^+e^- \rightarrow \overline{Y}Y$ based on potential models obtained with $\overline{p}p \rightarrow \overline{Y}Y$ data.*
- New data from BESIII on hyperon structure.**
 - → Understanding $\overline{Y}Y$ interaction important!

*PLB 761(2016) 456 BaBar: PRD 76 (2007) 092006 ***BES III: Talk by C. Li, BEACH2018

The PANDA experiment at FAIR

SIS 100/300 eV SIS18 **30 GeV Protons** p-Linac HESR Cu Target p/s @ 3 GeV 10^{7} PANDA ccelerating RESR/CR **Facility for Antiproton** Collecting Accumulating and Ion Research Precooling 100m 16

The PANDA experiment at FAIR

The High Energy Storage Ring (HESR)

Anti-protons within

 $1.5 \text{ GeV/c} < p_{pbar} < 15 \text{ GeV/c}$

- Internal targets
 - Cluster jet and pellet ($\bar{p}p$)
 - Foils ($\bar{p}A$)

The PANDA experiment at FAIR

Beam Dipole

Target Spectrometer

- 4π coverage
- Precise tracking
- PID
- Calorimetry

- Vertex detector
- Modular design
- Time-based data acquisition
 with software trigger

18

Forward Spectrometer

UPPSALA UNIVERSITET

Online reconstruction and filtering

PANDA will use an entirely software-based data selection!

UPPSALA UNIVERSITET

Online reconstruction and filtering

Challenges in hyperon reconstruction

р

Κ

π

Weak decays \rightarrow displaced vertices

- Tracks do not come from the interaction point.
- Hyperons may miss fast detectors.
- Complicated event topology.

Challenges in hyperon reconstruction

p

Λ

Κ

π

Need a data selection scheme compatible with the complex hyperon topology

- Independent of track origin.
- Dynamic event and track reconstruction.
- Paradigm changing event filter concept.
- Which detectors are the key players?

PANDA @ HADES

Anti-Proton

ANnihilation at

New Memorandum of Understanding between PANDA and HADES!

- Possible to test tools and methods on real data!
- Possible to do hyperon physics in Europe before PANDA@FAIR!

Interesting questions for HADES/PANDA

- Electromagnetic transitions of octet- and decuplet hyperons
 - $-Y_A \rightarrow Y_B \gamma$ (mainly $\gamma \Lambda$ quasi-final states)
 - $Y_A \rightarrow Y_B e^+ e^-$ (mainly $e^+ e^- \Lambda$ quasi-final states) - $Y_A \rightarrow Y_B \gamma \pi$

Summary

- Many fundamental questions manifest themselves in our (lack of) understanding of the nucleon.
- Strategy: replace one of the building blocks → hyperons!
- Hyperons of different flavour probe different scales of the strong interaction.
- Self-analyzing decay \rightarrow help pinpointing the role of spin.

Outlook

- Collecting and reconstructing hyperon events is a challenging task!
- Need detailed knowledge of hyperon signals in the PANDA detector.
- Need a track reconstruction method that
 - Can be used online.
 - Is independent of the interaction point.
- PANDA@HADES opens up new possibilities:
 - Test tools and methods developed for PANDA
 - Do interesting hyperon physics before PANDA@FAIR.

Thanks for your attention!