Magneto-plasmonic Au/Tb₁₈Co₈₂ nano-ring resonators

Initial patterning and update by Agnė Čiučiulkaitė

Uppsala University

Motivation

- Fabricate magneto-plasmonic nano-antenna arrays for all-optical switching of magnetization via focusing circularly polarised light
- Possible geometry for focusing circularly polarised light – nano-ring

Tb₁₈Co₈₂ amorphous layers

Magnetron sputtering of AlO_x(2 nm)/Tb₁₈Co₈₂(18 nm)/AlO_x(2 nm) on fused silica/Au(20 nm)

Figure 1. Faraday rotation measured at 600 nm wavelength of incident light for the hybrid structure film

Patterning

Characterization

- Scanning electron microscopy (SEM)
- Optical transmission measurements
- Spectroscopic Faraday rotation measurements

Scanning electron microscopy (SEM)

Figure 2. SEM micrographs of EBL patterned (a) disc, (b) donut and (c) ring arrays.

Sample	Nominal radius*		Actual radius**	
	R _{out} , nm	R _{in} , nm	R _{out} , nm	R _{in} , nm
а	120	40	125 <u>+</u> 5	0
b		60	126 <u>+</u> 5	30±5
С		80	123 <u>+</u> 5	60±5
Broken rings***		100	"Broken"	"Broken"

*Nominal radius \rightarrow from the patterning file

**Actual radius \rightarrow dimensions measured from SEM micrographs

***Not shown, can be found in Additional information Uppsala University

Optical transmission measurements

Figure 3. Optical transmission measurements of nanoarrays shown in Fig.2.

Spectroscopic Faraday rotation measurements: Schematics

Figure 4. Schematic of polar MOKE measurement geometry. Measured arrays fabricated from Tb₁₈Co₈₂ alloy, exhibit out-of-plane magnetization *M*. External field magnetic field $\mu_0 H$ was applied out-of-plane.

Spectroscopic Faraday rotation measurements: Results

Figure 5. Spectroscopic magneto-optical measurements of nano-arrays shown in Fig. 2: (a) Faraday rotation and (b) ellipticity.

Magneto-Optic measurements

Figure 1. Faraday rotation measured at 600 nm wavelength of incident light for the hybrid structure film

Summary

- Patterning ring structures via EBL and Ar⁺ milling results in expansion of structures, namely, outer diameter becomes slightly larger while the inner – smaller, resulting in thicker rings than expected from the design.
- Aiming for 80 nm thick rings with 120 nm outer radius resulted into what appears as closed discs;
- Aiming for 20 nm thick rings with 120 nm outer radius, resulted into broken rings and lost magnetization of the sample;
- Pattern appears to be uniform throughout the entire area of 3x3 mm²
- Spectroscopic Faraday effect measurements show broad resonances extending to IR region for three magnetic arrays of discs, thick and thin rings.

Outlook

- Modify the EBL designs in order to shift resonances to a visible range → reduce dimensions from 120 nm outer radius to …
- Fabricate identical structures using the following stuctures:
 - Au(40nm)/AlOx(20nm)/Au(40nm) (cap structure with AlOx since EBL worked on Au/AlOx/TbCo/AlOx multilayer);
 - AlOx/TbCo;
 - Au/AlOx/TbCo/AlOx;
 - **-** ...

Additional information

SEM images, optical transmission measurements

Array 1: Discs

Array 1: Discs

Array 2: Thick rings

Array 2: Thick rings

Array 3: Thin rings

Array 3: Thin rings

Array 4: Broken rings

Array 4: Broken rings

Optical transmission

Optical transmission: comparison of all arrays

Optical transmission: Discs

Optical transmission: Thick rings

Optical transmission: Thin rings

Optical transmission: Broken rings

