2D Nanophotonics

Alexey Nikitin

Outline of the presentation

Intro: Nanooptics of Van der Waals materials

Launching graphene plasmons with metallic antennas

Nanoimaging of hyperbolic polaritons

Diffraction limit ("Uncertainty principle")

Propagating waves

$$E(x, y) \propto e^{ik_x x + ik_z z}$$

Example: optical fibers

Evanescent waves

$$E(x, y) \propto e^{ik_x x - |k_z|z}$$

Example: total internal reflection

Surface waves: Plasmonics

Gravity-capillary waves on a surface of water

Surface plasmons on metallic surfaces

Science 340, 328 (2013)

Plasmons in graphene (one-atom-thick conductor)

Nature **487**, 77 (2012)

Surface plasmon-polaritons

Surface plasmon-polaritons on metallic surafces Dielectric $k_{sp} = \frac{\omega}{c} \sqrt{\frac{\varepsilon_m \varepsilon_d}{\varepsilon_m + \varepsilon_d}} > k_0$ Ε H_v Metal ω=*C* **Q** GP $\sim e^{-x/L}$ $q_o q_{SP}$ q_{x}

W. L. Barnes et al., Nature 424, 824 (2003)

ω

ω

Plasmonics in the visible

Plasmonic sensing and filtering: hole arrays

Plasmonic waveguiding and focusing

W. L. Barnes et al., Nature 424, 824 (2003)

F. López-Tejeira et al., Nat. Phys. 3, 324 (2007)

Optical solutions: possible future of Electronics?

Thin metallic optical interconnectors

mid-IR molecular spectroscopy

Plasmonics in mid-IR and THz

Transmission lines

Van der Waals forces

Geckos can stick to walls and ceilings because of Van der Waals forces

Van der Waals heterostructures: "Lego concept"

Nature 499, 419 (2013)

Polaritons in van der Waals materials

Science **354**, 1992 (2016) Nature Mat. **16**, 182 (2017)

Merging photonics and electronics

Photodetection with graphene

- *in THz*: Nat. Nanotechnol. **12**, 31 (2017)
- in mid-IR: Nat. Mater. 16 204 (2017)
- the review: Nature Nanotechnol. 9, 780 (2014)
- see works of Victor Ryzhii & Dmitry Svintsov

Graphene: Nobel Prize in Physics

2010

Andre Geim

Konstantin Novoselov

Graphene

Science 306, 666 (2004)

Graphene-based optoelectronics

Touch screen

Flexible smart window

Ultrathin flexible technologies

http://graphenewholesale.com/graphene-uses/

Plasmons in graphene

Intro: Nanooptics of Van der Waals materials

Launching graphene plasmons with metallic antennas

Nanoimaging of hyperbolic polaritons

Radio-wave and optical antennas

Graphene plasmons can be launched by metal antennas

We can image graphene plasmon wavefronts

- Plasmon field amplitude scales with antenna field
- Plasmon phase follows the antenna phase

Real part of the electric field - Experiment

Real part of the electric field - Calculation

Alonso Gonzalez, et al., Science 344, 1369 (2014)

Graphene plasmons can be focused by tailoring the antenna geometry

Graphene plasmons refract when passing through a double layer

Topography

Graphene plasmons refract when passing through a double layer

Graphene plasmons follow qualitatively Snell's law

$$\frac{\sin\alpha_1}{\sin\alpha_2} = \frac{n_2}{n_1} = \frac{\lambda_1}{\lambda_2}$$

$$\lambda_{p,}/\lambda_{p} = 1.4$$

sin $\alpha_{1}/sin\alpha_{2} = 1.75$

Alonso Gonzalez, et al., Science 344, 1369 (2014)

Intro: Nanooptics of Van der Waals materials

Launching graphene plasmons with metallic antennas

Nanoimaging of hyperbolic polaritons

Dispersion of waves in hyperbolic media

Nature Photon. 9, 214 (2015)

h-BN: a natural hyperbolic material

The figures are taken from Nature Commun. 5, 5221 (2014)

Science **343**, 1125 (2014) Nature Commun. **5**, 5221 (2014) Nature Commun. **6**, 6993 (2015) Nature Photonics **9**, 674 (2015)

Hyperboilc rays in h-BN

Due to the hyperbolic dispersion, the waves travelling inside h-BN crystals form "rays"

Hyperbolic rays in h-BN slabs

When a h-BN crystal has a finite thickness (slab), the rays reflect from the faces of the slab forming the subwavelength zig-zag pattern

Imaging of hyperbolic polaritons launched by Au antenna

Vain dreams: imaging of the hyperbolic ray in-plane

rays of volume polaritons

Metal gratings act as in-plane hyperbolic metasurface

Metallic hyperbolic metasurface

- A plasmonic grating can act as a hyperbolic metasurface in the visible
- In the mid-IR hyperbolic waves have been found, but they are too lossy...

Science **339**, 1232009 (2013) Appl. Phys. Lett. **103**, 141101 (2013) Nature **522**, 192 (2015) ACS Photonics **3**, 2211 (2016)

ACS Photonics *4*, 2899 (2017) ACS Appl. Nano Mater. *1*, 1212 (2018) by Andrei Laverinenko & Osamu Takayama

Can we do a hyperbolic metasurface with h-BN in the mid-IR?

h-BN grating acts as a hyperbolic metasurface

The in-plane propagation of out-of-plane hyperbolic h-BN phonon polaritons

- On bare h-BN: isotropic with radial convex wavefronts
- On structured h-BN: anisotropic with diverging concave wavefronts and increased k

P. Li, I. Dolado, et al., Science 359, 892 (2018)

Wavefront mapping of antenna-launched polaritons in h-BN grating

- Developed: hyperbolic metasurface (grating) based on a van der Waals material
- Imaged: anomalous wavefronts of deeply confined polaritons on HMS
- Imaging scheme (antenna launching and s-SNOM imaging) could be used for other anisotropic materials

Are there natural materials supporting the in-plane hyperbolic polaritons?

Black Phosphorus?

Nature Mat. **16**, 182 (2017) Nature Nanotechnol.**12**, 207 (2017)

too lossy...

Again phonon-polaritons, now in a biaxial Van der Waals crystal

s-SNOM: "echo" detection of hyperbolic polaritons

(3) tip scatters interfering fields at its apex

s-SNOM: "echo" detection of hyperbolic polaritons

W. Ma et al., Nature 562, 557 (2018)

FT of the images of the disks prove the anisotropy of the phonon-polaritons in α -MoO₃

W. Ma et al., Nature 562, 557 (2018)

Take-home messages

C V X C-MoO₃ SiO₂

- We have managed to couple to polaritons in 2D Van der Waals materials, as well as to mantipulate them, with resonant Au antennas
- We have designed a h-BN hyperbolic metasurface and imaged in-plane hyperbolic phononpolaritons
- We have found a natural anisotropic metamaterial (VdW biaxial crystal): α-MoO₃ and imaged longlived elliptic and hyperbolic phonons-polaritons

Acknowledgements

Nanooptics Javier Alfaro Irene Dolado Peining Li Matthias Marco Wiecha Vladimir Biloek Rainer Hillenbrand Saül Vélez Federico Golmar Felix Casanova Luis Hueso

Universidad de Oviedo La Universidad de Asturias

Pablo Alonso-González Javier Martín-Sánchez Javier Taboada-Gutiérrez

Frank Koppens Gabriele Navickaite

Pablo Pons Valencia Luis Martín-Moreno

Alba Centeno Amaia Pesquera Amaia Zurutuza

Qiaoliang Bao Zhigao Dai Yupeng Zhang

Sharath Sriram Kourosh Kalantar-Zadeh

Weiliang Ma Shaojuan Li Jian Yuan Shuit-Tong Lee

Song Liu James H. Edgar

