

FREIA Laboratory

Facility for Research Instrumentation and Accelerator Development

Accelerator Development in Uppsala

Roger Ruber Uppsala, 11 June 2019

Uppsala Accelerator History

1477: Uppsala University, oldest in Scandinavia

- 25'000 students, 7'000 staff
- historical profiles: Linné, Rudbeck, Celsius, Ångström, Svedberg

1940's: The(odore) Svedberg builds a cyclotron

- Gustaf Werner synchro-cyclotron (1947 2016)
 - nuclear physics & oncology
- CELSIUS ring (1984 2005)
 - nuclear & particle physics

2000's: External projects

- CTF3/CLIC (since 2005)
- FLASH/XFEL (since 2006)
- ESS (since 2009)

2010's: New ventures

- FREIA laboratory (est. 2011)
- Skandion clinic (est. 2015)

FREIA Laboratory

Facility for Research Instrumentation and Accelerator Development

Ultra Bright Electron Beams

Accelerator Physics

Cryogenics & Test Stands

High Intensity Proton Beams

RF Generation & Control

SC Cavities & Magnets

Accelerator Technology

Overview of Cryogenic Test Stands

CRYOGENIC TEST STANDS

11-Jun-2019

• Helium liquefaction

- 150 l/h at 4.5K (LN2 pre-cooling)
- 2000 I LHe dewar/buffer, 3+1 outlets
- cryostats connected in closed loop

Gas recovery

- 100 m³ gasbag
- 3x 25 m³/h compressor
- 10 m³ 200 bar storage

• 2K Pumping

- -~3.2 g/s at 10 mbar
- ~4.3 g/s at 15 mbar
- 110(90)W at 2.0(1.8)K
- Liquid nitrogen
 - 20 m³ LN2 tank

"HNOSS" Horizontal Cryostat

HNOSS = Horizontal Nugget for Operation of Superconducting Systems

- Test of superconducting cavities/devices
 - 3240 x ø1200mm inner volume
 - up to two cavities simultaneously,
 - each equipped with helium tank,
- Low or High power RF testing
 - fundamental power coupler (top, bottom, side)
 - (cold) tuning system
- Operation in the range 1.8 to 4.5K.

-3.2

-2.6

Under commissioning

• Test of SC cavities & magnets (<350kJ)

- Presentation by K. Pepitone
- d "News from the FREIA test facility"
- Three operation modes
 - vacuum; liquid bath; pressurized (bath with 2K heat exchanger)
- Operation in the range 1.8 to 4.5K
 Operation in the range 1.8 to 4.5K

Presentation by R. Santiago Kern "Challenges of a 1.9 K vertical cryostat design"

Development of High Power RF Technology

RF GENERATION & CONTROL

High Power RF Amplifiers

- 400 kW pulsed (352 MHz)
 - -2 stations, each 2 tetrodes TH595(A)
 - 3.5 ms, 14-28 Hz
 - ESS prototype development
- 50 kW CW (352/400 MHz)
 - single tetrode TH571b
- 1.2 MW pulsed (704 MHz)
 - HV modulator & klystron test for ESS

Designated Power [kW]

Transistor Amplifier Module

- single ended RF power amplifier
- based on BLF188XR
- 1250 W and 70% efficiency

Amplifier Demonstrator

- 8 modules, 10.5 kW
- 69% efficiency
 - pulsed 14 Hz, 3.5 ms

Compact Cavity Combiner

- 352 MHz 200 kW
 - 12 input ports
 - 0.2% insertion loss

Compact Planar Combiner

- 352 MHz 10 kW
 - 8 input ports
 - Gysel type
 - line coupling compensates parasitic coupling

M. Jobs et al. IEEE Trans. Components, Packaging Manufacturing Tech., vol. 8, 2018.

- 352 MHz 20 kW
 - 2 to 1
 - 2 ext. loads
 - combiner/splitter
 - insert.loss 0.1 dB

L. Hoang Duc et al. J. of Engineering, 2017.

11-Jun-2019

Signal Driven

- 2 ADC inputs at 250 Msps
 (*) analogue bandwidth of 750 MHz
- 2 DAC outputs at 500 Msps
- Digital downconversion to baseband 0 Hz, no analog mixers
 - downconverted signal at 10 Msps or 1 Msps, selectable
- undersampling to operate at any frequency from 10 to 750 MHz*

Self-excited Loop

- CW or
- pulsed mode
 - switch closes the loop for a duration of 2.86 ms, repetition rate of 14 Hz.

Development of SRF cavities for ESS

SUPERCONDUCTING CAVITIES

Double Spoke Cavity, 352 MHz

- Prototype cavity
 - without and with FPC
 - RF conditioning
 - $-Q_0$, gradient, fill time,
 - Lorentz force detuning, microphonics
 - test LLRF, SEL,
 - tuner operation
 - nominal gradient
- Cryomodules
 - prototype valve box & cryomodule
 - 13 series cryomodules
 - Oct. 2019 end 2020 (~6 weeks/CM)

Elliptical Cavity, 704 MHz

- RF stations
 - acceptance test of HV modulator for ESS local test stand
 - test RF distribution (circulator, load)
- Prototype high beta elliptical
 - with power coupler and tuner
 - RF conditioning
 - $-Q_0$, gradient, fill time, heat load
 - Lorentz force detuning, microphonics
 - test LLRF, SEL, tuner operation

Warm RF conditioning

- -~3 days/cavity
- MP bands were consistent with HNOSS test
 - strength depends on pulse length,
 - 1st/2nd conditioning...
- Cold RF conditioning
 - no coupler activity
 - Quench during cavity conditioning at 4 K
 - burst disc rupture \rightarrow thermal cycling
- Cavity #2 performance
 - multipacting regions similar as prototype
 - 2-3; 4-5; 7-8 MV/m
 - field emission sensitive to tuner motion or position (under investigation)

- Lorenz force detuning compensation (piezo)

shift (Hz

+ 🗷

Test and Development of SC Magnets for CERN

SUPERCONDUCTING MAGNETS

Unit

- Test of nested dipole orbit corrector magnets for the High Luminosity upgrade of LHC
 - magnet design and construction by CIEMAT (Spain)
 - test at FREIA (20 magnets)

- FREIR
- Canted-Cosine-Theta magnet is a dipole based on the superposition of two oppositely skewed solenoids with respect to the bore axis.
 - produces a perfect cosθ field,
 - is cost effective compared to a conventional SC dipole
 - but not the same field strength possibilities

11-Jun-2019

CLIC, Free Electron Lasers, Ultra-fast Electron Diffraction

HIGH BRILLIANCE ELECTRON BEAMS

ESS Superconducting Linac

ESS Neutrino Super Beam

HiLumi LHC

European Spallation Source (ESS) and High Luminosity LHC (CERN)

HIGH BRILLIANCE PROTON BEAMS

Summary

Uppsala University & FREIA Laboratory actively developing accelerator and instrumentation technology

Technology Development

- NC and SC RF cavities
- SC magnets
- RF power generation
- LLRF and controls

Physics Research

- high brilliance beams
- superconducting RF
- RF breakdown

Academic Teaching

