

News From IMP Magnet Test Stand

Dongsheng Ni, Wenjie Yang, Xudong Wang Superconducting magnet Group, Magnet Division, Institute of Modern Physics, Chinese Academy of Sciences

3rd International Magnet Test Stand Workshop, Uppsala University, 11-12 June 2019

Outline

- Overview of the test stand
- Test requirements of the MCBRD in China
- Upgrade project of the test station
- Field measurement & Data acquisition & Quench protection
- Test stand for HIAF project
- Summary

Overview of the IMP Magnet Test Stand

Helium Liquefier	39L/h	
Helium Dewar	500L	
Buffer Tank	100m ³	
Liquid Nitrogen Tank	50m ³	
Recovery Compressor	23m ³ /h	
Gas Bag	100m ³	
Impure Helium Tank	5m ³ @15MPa	

300mm Test Cryostat

700mm Test Cryostat

HILLHC PROJECT

Magnets Tested at IMP

SuperFRS

3T Solenoid

SECRAL II

CIADS Solenoids

Туре	Quantity
SuperFRS Dipole Prototype	1
CIADS solenoids	31
FRIB Solenoids	37
Others	>10

FRIB Solenoids

7T Penning Trap

Test Plan of the MCBRD

- China will provide 12 units of MCBRD before 2022.
- First two magnets for integration in D2 series are needed for mid 2021.
- China makes a 0.5m long prototype and a full size prototype.
- The full size prototype is needed for integration in the prototype D2 cold mass in mid 2020.
- Training and the integral multipoles measurement of the magnets will be processed at 4.5K in China.

Upgrade Project

- First Stage
 - Gas bag $\rightarrow 200 \text{m}^3$
 - Recovery compressor $\rightarrow 80 \text{m}^3/\text{h}$
 - Impure Gas Storage \rightarrow >10m³@15MPa
 - External Purifier \rightarrow 35m³/h
 - Vertical Test Dewar→Φ800mm L3800mm
- Second Stage
 - + Valve box for Vertical Test Dewar
 - + Pre-cooler system for cooling down & warm up

Sheme of the purifier

Sheme of the Recovery System

Status of the Upgrade

- The Helium Recovery System is under construction, will finished in two weeks.
- External purifier is waiting for Factory Acceptance Tests.
- 800mm dewar has been installed, hanging system is under manufacture.
- All upgrades in stage 1 will be finished before July.

Field Measurement

- Magnetic field measurements are performed by the rotating coil.
- The rotating coil contains two radius coils, the outer one measures the main component and the inner one for bucking improves the sensitivity for the high-order multipole components.
- Typical accuracy of the system :10⁻⁴.
- The rotating coil is positioned in the Anti-cryostat.
- The rotating coil is connected via a long stainless steel shaft to a rotation motor.
- The rotating shaft of the coil is coupled to an angular encoder and a slip ring.

Data Acquisition

- The inductive voltage of the rotating coil is fed into digital integrator (MetroLab, FDI2056).
- The integrators are triggered by the angular encoders.
- Results are obtained from the average of the forward and backward revolutions.
- The harmonic amplitudes and phases are calculated by a Fast Fourier Transform (FFT) of the acquired data.
- The magnet current is measured in real-time by a digital multimeter (NI PXI-4071).

Quench detection

- The quench detection system is based on the NI-cRIO platform.
- The outlet voltages of SC coils are used as judgement signal.
- The logical calculus is carried out by FPGA.
- The isolation module is used to protect the electronic equipment.
- When the quench is detected, a 24V quench signal will be sent to the power supply and the data acquisition system.

Future plan for HIAF project

- 300-500W refrigerator is required.
- 1 horizontal test bench is required.
- 2 vertical test bench
- 10g/s recovery and purifier system
- Plan to start testing in 2022.

Summary

- Cryogenic system: Capability will be improved.
 - The capability of helium recovery system will be improved.
 - The vertical dewar for MCBRD has been installed.
- Measurement and data system: Has been modified or tailor made.
 - Quench detection system and data acquisition system are available.
 - Magnetic field measurement system is under construction.
- The whole system will be ready in July and then the 0.5m prototype will be tested.
- Wish we will perform the test of MCBRDs with high quality.
- Wish the test stand for HIAF project will go on well step by step.

THANKS FOR YOUR ATTENTION

Slides For Reference Conceptual design of the Anti-Cryostat

Slides For Reference

Test Circuit

- Five voltages,
- V1 between EE4 and EE10,
- V2 between EE1 and EE4,
- V3 between EE1 and EE7,
- V4 between EE7 and EE10,
- V5 between EE1 and EE10
- are used for the quench detection.

HILUMI HL-LHC PROJECT

- Three threshold voltages, Vth1, Vth2 and Vth3 are applied to the quench judgement,
- when V1 λ 1 * V2>Vth1 or V3 λ 2 * V4>Vth2 or V5>Vth3 with three times respectively, the coil is considered quench and the power supply will be turned off.
- λ1 and λ2 are adjustment coefficients. Vth1 and Vth2 are usually set for 20~50 mV. V5 is not used during charging and discharging since the inductance is uncertain and Vth3 is usually set for 50~100 mV. V5 is also monitored by the quench detection system built in the power supply.
- All the voltage taps are connected to the voltage data acquisition device to obtain the wire voltage on each layer.