

3rd International Workshop on Superconducting Magnet Test Stands

Uppsala - Sweden 2019, June 11 – 12 Ångström laboratory

SM18 CRYO UPGRADE

Nicolas GUILLOTIN (CERN) on behalf of TE-CRG

And major contribution of : F. DHALLA, J-P. LAMBOY, R. LAMY, , J. MOULEYRE, A. PERIN, M. PEZZETTI,

OUTLOOK

-			
	I.	INTRODUCTION & CONTEXT	
1			

SM18 SIMPLIFIED CRYO DEVICES : BEFORE & AFTER UPGRADE

III KEY FIGURES

IV UPGRADE HANDOVER & RESTART PROTOCOL

V OVERVIEW

SM18 : CERN main facility for testing SC accelerator magnets and SC RF cavities

SM18 cryo infrastructure is being significantly upgraded (starting in 2019) to meet requirements for :

- LHC High Luminosity project (HL LHC)
- R&D program for SC magnets
- RF equipment until 2023 and beyond

SOME OF THE SYSTEMS CURRENTLY IN OPERATION IN SM18

- 5 vertical magnet cryostats : HFM, CLUSTER D, SIEGTAL, LONG, DIODES (80K, 4.5 K, 1.9 K)
- 10 Horizontal test benches for magnets (80K, 4.5 K, 1.9 K)
- 1 test bench for SC Link : (30 - 4.5 K, 2 ~ 15g/s)
- 4 test benches for RF cavities : V3, V4, V5, V6 (4.5 K, 1.9 K)
- 2 test benches for Cryomodules : M7, M9 (80K, 4.5 K, 1.9 K)
- 1 independent test Bench : Eu HIT GReC (10 - 4.5K)

2019 JUNE, 11

Hor. Magn, feed box

In Operation

Horizontal magnets test benches

SOME DEVICE OF THE CRYOGENIC INFRASTRUCTURE CURRENTLY IN OPERATION

6kW Linde Cold Box

27g/s (~700L/h) @4.5K

Purification units

3 x 130 Nm3/h Burckardt recovery compressors + 2 Purifiers 200 Nm³/h at 180 bars

Very Low Pressure compressors (WPU)

Values per WPU unit : 6 g/s @ 10 mbar 12 g/s @ 20 mbar 18 g/s @ 30 mbar (max)

Cool down warm up unit (CWU)

2 x CWU 80g/s – 2 x 120kW @80K

With 3 Kaesers compressors

FACING THE HL LHC PROGRAM

New SC devices for the HL-LHC project require the SM18 cryostructure upgrade

HL LHC String will be a new test stand to validate the collective behaviour of a structure including IT magnets

"HL-LHC IT STRING TEST", M. Bajko, LHC Performance Workshop 2018 Chamonix

INTRODUCTION & CONTEXT

II SM18 SIMPLIFIED CRYO DEVICES : BEFORE & AFTER UPGRADE

III KEY FIGURES

IV UPGRADE HANDOVER & RESTART PROTOCOL

V OVERVIEW

REQUIREMENTS FOR THE UPGRADE OF THE CRYOGENICS INFRASTRUCTURE

BASED ON TEST PROGRAM - ASSUMPTIONS FOR COVERING THE MAIN TEST BENCHES

- Magnet test benches: 2 vertical & 2 horiz. magnets at cold / month with 2 magnets powered simultaneously
- Superconducting cavities: 1 cavity /2 weeks & 1 cryomodule test every 6 months
- Parallel test of a superconducting link (SC Link) and/or the IT string (String)
- Possibility of additional individual systems tests on dedicated facilities

SCHEMATIC LAYOUT OF THE SM18 CRYO INFRASTRUCTURE AFTER UPGRADE

10

SM18 NEW COLD BOX

Mechanical Integration, Electrical and Control System review held at Linde Kryotechnik AG (LKT) in 2018 and beginning of 2019

Transport and arrival at the SM18 2019 MAY, 14

Cold Box installed in the SM18 2019 MAY, 15

SH18 NEW MAYEKAWA COMPRESSOR

PROCESS UPGRADE FOR Nb3Sn MAGNETS

Nb3Sn SC magnet tests at the SM18 need a control of the ∆T during cool down and warm up, in the 80 – 300K range

 \Rightarrow Automated Δ T control during cool down / warm up of Nb3Sn magnets has been implemented and need to be evaluated in real conditions

Installation of a new PT100 close to the magnet cold mass
Measurement of the ΔT between CFB Temp_inlet – CFB Temp_outlet = value A
Measurement of the ΔT between CFB Temp_inlet – Magnet new PT100 = value B
Continuous regulation of the ΔT based on the max value : A or B
Redundancy for the PT100 is necessary
Particular case for the reconnexion after a trip

2019 JUNE, 11

CRYO PLC

CONTROL & ELECTRIC UPGRADE

LINDE Provide: Machine protection specification

For the 35g/s Cold Box & Mayekawa compressor :

- Electrical cabinet installation for the 35g/s CB & Mayekawa CP
- CP logic document sent to LKT, ready to be commissioned
- CB logic sent to LKT

to Process control specification THE LINDE GROUP THE LINDE GROUP Delivery by Linde Controls + Machine protection EN/EL 3.3kV cells

Control & Elec upgrade for the SH18 :

Buffers and Burkhardt controlled by an independent system to allow independent maintenance and debugging

2019 : New rack with independent M580 PLC + RIO (Remote I/O)

2020 : M580 PLC moved to Infra Cabinet and RIO linked with fiber optic

INTRODUCTION & CONTEXT

SM18 SIMPLIFIED CRYO DEVICES : BEFORE & AFTER UPGRADE

III KEY FIGURES

IV UPGRADE HANDOVER & RESTART PROTOCOL

V OVERVIEW

SM18 CRYOPLANT GENERAL KEY FIGURES : AFTER UPGRADE

Sytem	Characteristics
EXISTING 6kW CB – ''LINDE A''	27g/s (~700L/h) @4.5K
NEW Linde CB – "LINDE B"	35g/s (~1000L/h) @4.5K
Process compression station	3 Stal He compressors (350 g/s @19 bar), 1.6 MW elec. power + ORS + new MAYEKAWA compressor (main drive motor of 1.4 MW)
Very Low Pressure Pumping (WPU)	2 warm pumping units, each one : 6 g/s @ 10 mbar 12 g/s @ 20 mbar 18 g/s @ 30 mbar (max) To each WPU is dedicated a very low pressure heater of 32 kW (20g/s)
Pre-cooling to 80K	2 x CWU (80g/s - 2 x 120kW @80K) - With 3 Kaesers compressors
GHe Purification	5 x 80 m ³ Balloons at 1 bar (3 Burckardt recovery compressors + 2 Purifiers 200 Nm ³ /h at 180 bars)
Pure GHe storage	8 x 75m3 @18 bars
LHe storage	1 x 25 m ³ LHe storage at 1.6 bar (+ 1x 10 m ³ mobile)
LN2 storage	50'000L Dewar

SM18 TYPICAL CURRENT PLANNING : LHe DISTRIBUTION FOR THE TESTS

										JUNE																			JL	JLY									
		т	w	т	F	M	T۱	wт	F	м	т	w	Т	FI	и т	r v	N 1	т	-	M	r۱	NТ	F	м	т	w	т	F	мт	w	/т	F	м	т	w	т	F	мт	w
		04	05	06	07	10	11	12	13	14 1	7 1	8 19	20	21	24	25	26	27	28	01	02	03	04 0	5 0	3 09	10	11	12	15	16	17 1	.8 19	3 22	23	24	25	26	29	30 31
	HFM	<u> </u>				SP10	9 4K				_	_			SP107	4K			_					SP1	.07 4	(—	—		MQ	XFS6					
	Diode	<u> </u>			-		TRIM	LEAD	S		-	_					_		_	FEATH	HER		_							—	—		┿				\rightarrow	_	
	Siegtal	<u> </u>			-			_						_			_		_				Do	decar	ole 6	00A						_	┿				\rightarrow		
	Cluster D	<u> </u>			_	_		Ν	ACBXE	P 2K				_		_			_								MQ)	(FS4					—				\rightarrow		
MAGNETS	Cluster A					CC Th	erma	al cycle	es (A	(2)																					L	_	—				\rightarrow		
	Cluster B				-					PIE	UVR	E (B2)							_				_										_						
	Cluster C				_						_						_													(0	2) 11	Т	4	11T	мвне	3 LMB	нвоо)2	
	Cluster E																	٦	Fests	géon	nètre	: s	(E2)															
	Cluster F						PIEUV	/RE o	urren	t lead	s 20k	A @4K																											
	MAGNET Consumption [g/s]	0	0	10	14	14	23	15	15	22 2	0 2	0 20	20	20	14	14	14	18	18	11	11	11	11 1	5 2	2 22	22	32	18	14	14	22 2	12 1	8 18	18	18	18	18	8	8 8
	M7																																						
	M9																																						
	V3												High	Gradi	ent			2	2К																				
PE	V4					Crab	cav - '	Tuner			4.2	ĸ																											
	V5							н	IIE ISO	LDE ca	wity			2К																									
	V6																		LHO)1		21	(
	RF Consumption [g/s]	0	0	8	6	6	6	6	11 1	1 11	11	11	16	16	5	5	5	10	10	5	5	5	5 5	5	5	5	5	5	5	5 /	5 () 0	0	0	0	0	0	0	0 0
MAG+RF	Global consumption [g/s]	0	0	18	20		29	21 2	26 3	3 3:	L 3:	1 31	36	36		1.9 1	19	28	28	16	16	<mark>16 1</mark>	.6 2	27	27	27	37	23	19 1	.9 2	. <mark>7 2</mark>	28	18	18	18	18	18	8 8	38
	CRYO STATUS											1																											
	Process compressors																																						
	Cold Box																																						
CRYO	Dewar																																						
	Recovery compressors																																						
	Purifiers																																						
	Cryo OK																																						

• A priority management is currently essential for the cool down organisation (capacity limited to 27 g/s)

 The 35g/s cold box will be mandatory to operate HL LHC String in parallel of the current tests and reduce Quench recovery time

INTRODUCTION & CONTEXT

SM18 SIMPLIFIED CRYO DEVICES : BEFORE & AFTER UPGRADE

III UPGRADE KEY FIGURES

IV OPERATIONAL PROTOCOL & TOOLS AFTER THE UPGRADE

V OVERVIEW

RESTART PROTOCOL : CHECKLISTS

T BENCH NAME CRIPTION TYP Mai We Fill Est TOPIC SUI	pe of Magnet / Cavity : in dimensions (m): ight (kg) : ing pieces -if applicable- (Y/N) : iimated volume of LHe needed during nominal Operation (m3) :		Induc Numb Positi	tance -if ma er of curren on of the he	gnet- : t Leads -if aters -if ap	applicable-:		
CRIPTION Typ Mai We Fill Est	pe of Magnet / Cavity : in dimensions (m): ight (kg) : ing pieces -if applicable- (Y/N) : timated volume of LHe needed during nominal Operation (m3) :		Induct Numb Positi	tance -if mag er of curren on of the he	gnet- : It Leads -if aters -if ap	applicable-:		
TOPIC								
	B-TOPIC	WHO	YES N		Date	Remarks		Names
Non	ninal pressures clearly defined (Pnom)	USERS	125 1	UTALOES	Duic	Remains		
Max	ximal pressures clearly defined (Pmax)	USERS						
SAFETY ASPECTS Star	ndard insert -if applicable-	USERS						
Safe	oty valves & runture disks validated	USERS & CRG.ME & CONTRACT	OR SO					
Risk	k assessment performed	USERS & CRG-ME & CONTRACT	OR				╤╲╌║────┖	
					· · · · · ·		•	
Inte	rlock chain verified : Interlocks and alarms defined and implemented (cryo OK operational)	USERS & CRG						-
Delt	ta T instruction for cool down/warm up clearly defined -if applicable-	USERS						
EQUIPMENT PROTECTION Max	k/min Helium flow instruction for cool down/warm up clearly defined -if applicable-	USERS						
Reg	suested flow for temperatures for the current leads -if applicable-	USERS			i-/			
FILLING PIECES Fillin	ng pieces available and installed to reduce LHe consumption	USERS						
EQUIPMENT HARDWARE Hard	dware ready for Cryo Operation : mechanical & instrumentation	USERS & CRG						
Auto	omated process needed and operationnal to operate without a permanent control of Cryo Operators				┼ <mark>┡</mark> ╌ <mark>╴</mark> ──			
Ope	eration procedure for cool down, warm up etc				∔ _			
OCESS & PROCEDURES & P&II	D of the Cryo Equipment							
SSOCIATED DOCUMENTS Elec	ctrical schemes for cryogenics USERS & CRG	USERS & CRG		_				
Exis	sung prior Cryo report							
Exis	sting prior USERS report	USERS						
Con	tacts clearly defined for the CRYO follow up	CRG						
Con	tacts clearly defined for follow up by the USERS	USERS		//-R	† -			
RGANISATIONNAL ASPECTS	t sequence . Target of the tests - including evaluation of tests duration	USERS			┼╷ ── │ -│-			

OK FOR A RE

Could be implemented with CARPENTER 🛠 SM18 Carpenter

OPERATIONAL PROTOCOLS

- **SAFETY** Human safety \Rightarrow respect of rules and best practices for Operation
 - Equipment safety \Rightarrow preventive maintenance, follow up with INFOR

Excel forecast tool to anticipate and simulate LHe consumptions

COMMUNICATION

- "Weekly" general Coordination meetings for the tests (priority definitions)
- Weekly Technical meetings
- Reports on activities

SUMMARY

The upgrade of the cryogenic system at the SM18 gives the possibility to :

- Increase the global LHe capacity for the Magnets and RF cavity tests
- Ease Quenches recovery for Magnet tests
- Allow the operation of the SM18 test benches while also running the test program of the HL-LHC String
- Allow one CB/Compressor system to be under maintenance while the LHe supply to dewar can continue
 ⇒ Operation flexibility & Redudancy in case of major issue

