

Architecture of a Magnet Safety System using a CompactRIO and LabVIEW for the STAARQ magnet test stand in CEA Saclay

Philippe De Antoni, S. Trieste, Y. Le Noa and F. Molinié

Irfu/DIS/LEI

Irfu: Institute of Research into the Fundamental Laws of the Universe **DIS:** Systems Engineering Department **LEI:** instrumental electronics laboratory

Outline

- STAARQ magnet test stand overview
- MSS hardware
 - Digital MSS cabinet architecture
 - Analog front end and Compact RIO layout
- MSS software
 - Main specifications and architecture
 - MSS core in the FPGA
 - Interface FPGA / μ P
 - μP code functionalities and architecture
 - Compact RIO Resource usages
- Conclusion

STAARQ – Magnet Test stand – Overview drawing

Digital MSS – Cabinet and interfaces overview

Subsystem's interconnections

Analog Front End chassis

2 Channels

- Gain 1 to 500 Bandwith = 1 kHz
- ± 10 V differential outputs/channel
- ± 10 V single ended outputs/channel
- Isolation working voltage = 3,5 kV

Sawtooth 1 Hz, 1 mVpp, G=20.9

8 boards by chassis

- The chassis works like an isolated voltmeter
- 16 channels

Module NI 9220 in the cRIO

- 16 ADC 16 Bit
- Simultaneous sampling
- Fs =100 kHz
- ± 10 V differential input

Sawtooth 1 Hz, 40 µVpp, G=20.9

Measurements acquired with the digital MSS

Digital filter bandwidth = 100 Hz

Worst case configuration

- HV input bridge attenuation = 10
- High input impedance to sustain 3.5kV permanently

Irfu/DIS/LEI

cea

3rd International Magnet Test Stand Workshop- June11,12

Front end chassis with ADC – Next generation - 1

General specifications

- 24 channels Front end chassis with a high working voltage = 4,2 kV
- Separation of the isolated DC-DC power supplies from the ADCs
- Front-end chassis runs in stand alone The compactRIO only reads the measurements when ready

- Each chassis has a control board to run the acquisition with the ADC and the reading with the cRIO
- Master Chassis
 - Provides the CS* and the Clock to trigger and read the 24 ADC of each chassis (local and internal operations)
 - Processes the CS*, Clock and Data
 Ready signals for the data reading of the 2 chassis by the compact RIO
- Slave Chassis
 - Run in parallel with the master chassis

The MSS software is implemented in a cRIO 9039

- The cRIO chassis must run in stand alone mode after the power up
- The MSS core for the quench detection must be embedded in a FPGA
 - Objective of reliability
- All the others MSS functions are embedded in the FPGA or in the μP with Linux real time, depending on the architecture and the needs.

Examples:

- Writing of the MSS parameters in the MSS core at cRIO power-up (normal operations) or during MSS tuning (magnet commissioning)
 - <u>MSS parameters</u>: Offset, Gain, Coefficients of the equations, voltage and time thresholds
- Circular buffer with the pre-trigger and post-trigger functionalities to record the quench incident
- Others ...

CompactRIO – General architecture

General software architecture

MSS core – General Description

3rd International Magnet Test Stand Workshop-June11,12

MSS core – Procedure to design the stages

HUB – General description

- - Reset of DMA monitoring
 - when the circular is recording
 - Out logic toward the PLC of the RT watchdog state
 - Reset MSS from the UI

- The number of FPGA top levels Controls & indicators are minimized to save FPGA resources
- Design methodology comparable to the MSS core

Example of a DMA FIFO mechanism for the data stream

- Interface between MSS core and RT
 - 1. Data stream of MSS datas (Fs1) toward the circular buffer
 - 2. Data stream of MSS datas (Fs2) toward the UI
 - 3. Data stream of MSS parameters (50 mS) toward the UI and MSS parameters writing
 - 4. Slow control operations
 - Monitoring DMA oveflows and
 - Interlock between the FPGA and RT

cea

Controls & Indicators work like asynchronous registers

RT – General description

Real time MSS functions

- Circular buffer using the 2 GB (DDR3) and the SSD disk
- Reading (for verification) and writing of the MSS parameters (from SSD or UI)
- Interface with between the HUB and the "high level" devices (Ethernet, USB ...) for data streaming, asynchronous single Rd/Wr ...

Real time monitoring of the cRIO (FPGA and RT)

- CPU et memory usages
- Time loops: Finish late, actual execution times
- All loops except NTWs: error code, Overflows (DMA, RT fifo, Queue ...)
- RT watchdog

Table 6: Kintex-7 FPGA Feature Summary by Device

Device	Logic Cells	Configurable Logic Blocks (CLBs)		DCD	Block RAM Blocks ⁽³⁾						XADO	Total I/O	Max
		Slices ⁽¹⁾	Max Distributed RAM (Kb)	Slices ⁽²⁾	18 Kb	36 Kb	Max (Kb)	CMTs ⁽⁴⁾	PCle ⁽⁵⁾	GTXs	Blocks	Banks ⁽⁶⁾	User I/O(7)
ХС7К70Т	65,600	10,250	838	240	270	135	4,860	6	1	8	1	6	300
XC7K160T	162,240	25,350	2,188	600	650	325	11,700	8	1	8	1	8	400
XC7K325T	326,080	50,950	4,000	840	890	445	16,020	10	1	16	1	10	500
XC7K355T	356,160	55,650	5,088	1,440	1,430	715	25,740	6	1	24	1	6	300

48 measurement channels

■24 equations : a*x-b*y

Down-sampling filters 10kHz to 1kHz not implemented in the HUB

Reports			Reports					
Summary 💌			Summary					
Compilation completed successfully.200 MSS parameters (U32)Device Utilizationusing logic resources			Compilation completed successfully. Device Utilization	400 MSS parameters (U32) using RAM Blocks				
Total Slices: 58,1% (29605 out of 50950 Slice Registers: 31,0% (126291 out of 40 Slice LUTs: 32,0% (65306 out of 203800 Block RAMs: 4,3% (19 out of 445) DSP48s: 13,5% (113 out of 840) Timing) 07600))	,	Total Slices: 34,1% (17358 out of 50950) Slice Registers: 11,6% (47092 out of 407600) Slice LUTs: 21,9% (44654 out of 203800) Block RAMs: 8,1% (36 out of 445) DSP48s: 2,3% (19 out of 840) Timing					
80MHz (Used by non-diagram compo 40 MHz Onboard Clock: 40,00 MHz (M	nents): 80,00 MHz (Met MHz maximum) let MHz maximum)	40 MHz Onboard Clock: 40,00 MHz (Met MHz maximum) 80MHz (Used by non-diagram components): 80,00 MHz (Met MHz maximum)						

cRIO – RT used ressources - Monitoring

Intel Atom E3845 – 4 cores - 1.91 GHz

- More than 1,5 GB to build the circular buffer at 10 kHz
- CPU and memory usages are low and flat
- The views are part of the cRIO monitoring panels

Reset_Supervision_cRIO Seuls les états de Finish Late, Temps Max Itération, *Lossy et Overflow* sont réinitialisés Une Error Code est une erreur majeure obligeant un reset system de RT. Supervision cRIO FluxFel_3a1 Supervision_cRIO_3d1 MemSC 3b1 Paramètres_MSSn_3c1 FinishLate FinishLate **OverflowParamMSSn** FinishLate FinishLate FPGA Tmax_Itération_µS TMax_Itération_µS T Max Itération µS Tmax_Itération_mS OverflowDMAfifo_Fel 260 1024 638 🛑 FPGA RTFIFOLossy Error code Reset_Supervision_cRIO RTFIFOLossy OverflowDMAfifo Fer 🔵 Copie_Etat Error code Error code FPGA Error code N° Série FPGA 0 FluxFel 3a2 MemSC 3b2 QueueLossy Error code Supervision_cRIO_3d2 Error code Error code 0

Memory and CPU usages

Fast variations (sampled every 0,1S)

3rd International Magnet Test Stand Workshop-June11,12

Conclusion

> MSS hardware architecture is modular for the scalability

> MSS software is split in 4 layers from the FPGA to the UI

- Each layer is independent from the upper one
- Each layer follows a modular organization to facilitate the modifications and the adding of new functions
- The MSS core in the FPGA runs in stand alone mode

Next stages of the digital MSS project

- Tests with simulated quench signals
- Test with the quadripole Q4 short (Hi-LUMI)
 - Measurements only
 - No connection with the breakers
 - October 2019
- Deployment for the STAARQ test facility
 - As a redundant MSS of an analog MSS
 - Exploitation april 2021

