

bmb+**f** - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Radio-luminescence of water and ice

as a new detection channel for neutrino telescopes

Anna Pollmann

Light production by (exotic) particles in water and ice

Relativistic speeds

- continuous light emission
 - Cherenkov light
 - Cherenkov light from secondaries
- stochastic losses
 - bremsstrahlung
 - pair production
 - photonuclear interactions

Light production by (exotic) particles in water and ice

Relativistic speeds

- continuous light emission
 - Cherenkov light
 - Cherenkov light from secondaries
- stochastic losses
 - bremsstrahlung
 - pair production
 - photonuclear interactions

Cherenkov light emission pattern

- catalysis of proton decay via
 Rubakov-Callan or KKST
 (predicted theoretically in some models)
- thermal shock waves (not used yet)

Light production by (exotic) particles in water and ice

Relativistic speeds

- continuous light emission
- stochastic losses

Intermediate speed

not covered yet

Slow particle speed (< 0.1 c)

- catalysis of proton decay
- thermal shock waves

Idea: Luminescence light

- ionising radiation passes through matter
- it excites atoms/molecules
- relaxation with light emission
- works for all speeds
- works for all ionising particles
 Light yield defines detectability!

Luminescence light measurement

Characterisation via

- light yield
- decay kinetics
- emission spectrum
- quenching

Dependencies

- temperature
- impurities / solubles
- radiation type
- pressure

Few existing measurements

with very different setups and results

Note:

- sample quality varies significantly between measurements
- different radiation causes different amount of quenching

Light yield measurement in water

- ultra-purified water degassed in vacuum
- induced luminescence light with α -particles from ²⁴¹Am
- measured single photons with photomultiplier
- probed background (temperature dependent)
- calibrated & calculated optics

Light yield measurement in water

- ultra-purified water degassed in vacuum
- induced luminescence light with α -particles from ²⁴¹Am
- measured single photons with photomultiplier
- probed background (temperature dependent)
- calibrated & calculated optics

arxiv:1710.01197

Laboratory measurements

- ultra-purified water degassed in vacuum (frozen to bubble free ice)
- induced luminescence light with α -particles from ²⁴¹Am
- measured single photons with photomultiplier
- probed background (temperature dependent)
- calibrated & calculated optics

Previous light yield measurements

Note:

- sample quality varies significantly between measurements
- different radiation causes different amount of quenching

Comment:

- uncertainties of new laboratory measurement originates from water quality
- "Trofimenko" is the only <u>in-situ</u> measurement, all others use cleaned water

arxiv:1710.01197

Previous light yield measurements

Note:

- sample quality varies significantly between measurements
- different radiation causes different amount of quenching

Comment:

- uncertainties of new laboratory measurement originates from water quality
- "Trofimenko" is the only <u>in-situ</u> measurement, all others use cleaned water

arxiv:1710.01197

SPICEcore borehole

- filled with anti-freeze / drilling grease (Estisol)
- measurements in 2018:
 - UV transparency DESY
 - scattering / absorption SKKU / Berkeley
 - this work

SPICEcore borehole

- filled with anti-freeze / drilling grease (Estisol)
- measurements in 2018:
 - UV transparency DESY
 - scattering / absorption SKKU / Berkeley
 - this work

Luminescence Logger

Goal

 irradiate ice with β-source and measure back-scattered light

Method

- press source against ice
- guide scattered light onto photomultiplier

Details

- diameter: max 92 mm
- length: 1.30 m
- commercial mini USBoscilloscope for readout
- light detection with photomultiplier tube
- several sensors: i.e. temperature, gyro, IR camera

Luminescence Logger

Goal

 irradiate ice with β-source and measure back-scattered light

Method

- press source against ice
- guide scattered light onto photomultiplier

Details

- diameter: max 92 mm
- length: 1.30 m
- commercial mini USBoscilloscope for readout
- light detection with photomultiplier tube
- several sensors: i.e. temperature, gyro, IR camera

Luminescence Logger

Goal

 irradiate ice with β-source and measure back-scattered light

Method

- press source against ice
- guide scattered light onto photomultiplier

Details

- diameter: max 92 mm
- length: 1.30 m
- commercial mini USBoscilloscope for readout
- light detection with photomultiplier tube
- several sensors: i.e. temperature, gyro, IR camera

Light yield analysis

- fit resulting photon detection efficiency and compared with measured rates to obtain light yield bounds
 - Estisol luminescence
 - unknown average distance of source to ice
- uncertainties included (a.o.)
 - scattering (impact: +/- 13%)
 - absorption (impact: +/- 13%)
 - source activity (impact: -19% +11%)
 - anti-freeze (Estisol) luminescence yield (impact: +/- 15%)

arXiv:1908.07231

Luminescence light measurement

First laboratory measurement at temperatures of neutrino telescopes

Note:

- sample quality varies significantly between measurements
- different radiation causes different amount of quenching

Comment:

- uncertainties of new laboratory measurement originates from ice quality
- "Trofimenko" and "IceCube" are the only <u>in-situ</u> measurements, all others use cleaned water

Luminescence light measurement

First laboratory measurement at temperatures of neutrino telescopes & first in-situ measurement

Note:

- sample quality varies significantly between measurements
- different radiation causes different amount of quenching

Comment:

- uncertainties of new laboratory measurement originates from ice quality
- "Trofimenko" and "IceCube" are the only <u>in-situ</u> measurements, all others use cleaned water

Time differences

- time differences between a pulse and all following pulses
- 40-120 ns:
 - obtained from waveform
 - corrected for PMT effects
- > 120 ns: obtained from trigger timestamps

12

Time differences

- time differences between a pulse and all following pulses
- 40-120 ns:

.

 10^{6}

10⁵

10⁴

10³

10²

10¹

40

Counts

- obtained from waveform
- corrected for PMT effects

Ice (3a) --- Estisol (2c) ---- Ice (4a)

IceCube Work in Progress

80

Time / ns

100

120

Ice (3b) Ice (2e)

Ice (4b)

> 120 ns: obtained from trigger timestamps

Ice (2d)

arXiv:1908.07231

anna.pollmann@uni-wuppertal.de

60

Applications of luminescence light in neutrino telescopes

Calibration

- IceCube and KM3NeT:
 - energy reconstruction of high energy neutrinos
 - correlated noise on long time scales
- Super-K: particle identification

- Cherenkov light proportional to velocity but Luminescence proportional to deposited energy
- for high energy events 1 sec around trigger is saved in IceCube
- challenge in IceCube: dead times of read-out system

Calibration

- IceCube and KM3NeT:
 - energy reconstruction of high energy neutrinos
 - correlated noise on long time scales
- Super-K: particle identification

Data: taken from a random trigger

Background estimation: reshuffling data by cutting 10µs traces

Applications of luminescence light in neutrino telescopes

Calibration

- IceCube and KM3NeT:
 - energy reconstruction of high energy neutrinos
 - correlated noise on long time scales
- Super-K: particle identification

155

2011

Calibration

- IceCube and KM3NeT:
 - energy reconstruction of high energy neutrinos
 - correlated noise on long time scales
- Super-K: particle identification ٠

Neutral particle detection

- neutral exotic particles
- dark matter annual modulation

arXiv: 1402.0466v2

2012

Expected DM peaks

2013

Applications of luminescence light in neutrino telescopes

Calibration

- IceCube and KM3NeT:
 - energy reconstruction of high energy neutrinos
 - correlated noise on long time scales
- Super-K: particle identification

Neutral particle detection

- neutral exotic particles
- dark matter annual modulation

Detection of slowly moving particles

- IceCube and KM3NeT: heavy electric or magnetic charges
 e.g. magnetic monopoles
- Super-K: slow interaction products e.g. kaons

stable condensates with high "charge" **Q** of lepton or baryon number

boundary layer

squarks / sleptons

candidate for dark matter

Q-Balls

 Iuminescence enables search for electrically charged Q-Balls

Affleck-Dine condensate

Magnetic Monopoles

- elemental magnetic charge (Dirac) $g_D = e / 2 \alpha \approx 68.5 e$
- with huge mass created
- shortly after the Big Bang (GUT) or in intermediate stages of symmetry breaking (IMM)

Mapping the parameter space of magnetic monopoles

anna.pollmann@uni-wuppertal.de

Event views omitting noise

20

Q-Balls are bright events in IceCube ...

Mean total charge per event

21

Simulation of Q-Balls in IceCube

Faster Q-Balls

after trigger

Simulation of Q-Balls in IceCube ... but the efficiency to trigger them is low Faster Q-Balls Efficiency to trigger an event which after trigger produces light in IceCube IceCube work in Progress 137 0.001 60.79 (% 1.44960.15 0.002 59.56 1.496 0.002 log(efficiency / $100 \cdot$ v = 0.01c59.22 0.002 1.3260 59.411.462 0.002 Q=10³⁰ g_e / e 58.410.002 1.211 $M_{SuSy}=100GeV$ 0.995 57.11 0.002 Slower Q-Balls 0.002 1.034 57.96 50 0.001 -0.90556.11 v = 0.001c0.003 55.38 0.848 0.002 54.34 0.616 Q=10²⁰ 0.002 0.423 53.00 after trigger 48.850.003 0.228 M_{SuSy}=1000GeV 0.0 0.014 5.15 -3 10^{-3} 10^{-2} 10^{-4} before trigger trigger efficiency: triggered events divided by events wich

produce light in the detector

Event views omitting noise

anna.pollmann@uni-wuppertal.de

Photomultiplier

Filter

Ice and

²⁴¹Am Source

Outlook: Spectrum measurement in laboratory and at South Pole

- spectrum of single photons using high efficiency filters
- first test worked, purchasing more filters
- will test with linear filter too
- filters implemented into logger
- spectrum helps identifying underlying excitation mechanism

Outlook: Spectrum measurement in laboratory and at South Pole

- spectrum of single photons using high efficiency filters
- first test worked, purchasing more filters
- will test with linear filter too
- filters implemented into logger
- spectrum helps identifying underlying excitation mechanism

PhotomultiplierFilterIce and241Am Source

Summary

- first measurements

 of luminescence in ice
 in lab and in-situ
- first analyses ongoing using luminescence light as detection channel
 - low relativistic monopoles
 - (non-relativistic monopoles)
 - charged Q-Balls
- sensitivity for magnetic monopoles exceeds previous limits by far

Outlook

Measurements in season 2019:

- more statistics
 - more depths -
- <u>new</u>: wavelengths spectrum -

Analyses: will be unblinded within a year -

Backup

Bottom camera ~100m

(8.12.2018 11:48:41h) 20181119_01_25_46

27

Spring camera ~150m (10.12.2018 17:22:59h) 20181119_00_30_08

Configuration 2: Spectrum measurement

New functionality: Spectrum measurement

- second motor drives filter-wagon into optical pathway behind radioactive probe
- 3 edge filters on wagon can be exchanged to measure spectrum

Light yield analysis

- GEANT4 simulation of source and electrons in anti-freeze liquid & ice (tracks & energy losses)
- Source holder Mirror custom ray tracing of photons separating the Glas Oil Ice 4 contributions of 5 Cherenkov in anti-freeze Luminescence *f* liquid (Estisol) 0 Cherenkov in ice Y / cm Luminescence -5 -10varied the distance of source to the ice PMT varied light yield of ice luminescence -15 5 -10-5 -15 0 Z / cm Electrons Custom ray tracing highlighting leaving source Cherenkov (orange) and

anna.pollmann@uni-wuppertal.de

into Ice

(GEANT)

Luminescence (red) photons

reaching PMT plane

Light yield analysis

- fit resulting photon detection efficiency and compared with measured rates to obtain light yield bounds
 - Estisol luminescence
 - unknown average distance of source to ice

- uncertainties included (a.o.)
 - scattering (impact: +/- 13%)
 - absorption (impact: +/- 13%)
 - source activity (impact: -19% +11%)
 - estisol luminescence yield (impact: +/- 15%)

Q-ball characteristics

- Baryon number Q: 10²⁰ 10³⁰
- Mass: 10¹⁸ GeV 10²⁸ GeV
- Radius: 10⁻¹⁶ m 10⁻¹¹ m
- Velocity $v \approx 10^{-3} c$
- Electric charge: $0 \le Q_e \le 137e$

- Before inflation the universe is filled with a scalar field
- Afterwards field starts to oscillate
- \rightarrow disintegrates into Q-balls

© Sarah Pieper

Interaction for electrically neutral Q-Balls:

Q-ball characteristics

Relic Magnetic Monopoles

- elemental magnetic charge (Dirac) $g_D = e / 2 \alpha \approx 68.5 e$
- with huge mass created
 - shortly after the Big Bang (GUT) $10^{13} \text{ GeV} \leq M_{MM} \leq 10^{19} \text{ GeV}$
 - in intermediate stages of symmetry breaking (IMM) $10^7 \text{ GeV} \leq M_{MM} \leq 10^{13} \text{ GeV}$
 - acceleration in magnetic fields for

 $M_{MM} \leq 10^{14} \text{ GeV to } E_{kin} \leq 10^{15} \text{ GeV}$

• trapping around galaxy, sun, Earth $v \sim 10^{-3}$ / 10⁻⁴ / 10⁻⁵ c

Signatures of fast Magnetic Monopoles

Non-relativistic Magnetic Monopole signature

- decay of proton -> electromagnetic cascade
- probed speeds: $10^{-3} \leq \beta \leq 10^{-2}$
- typical event length
 ~ milli seconds
- background: PMT noise and muons
- reconstruction
 - search for independent local coincidences
 - triplets are 3 pairs of hits fulfilling certain conditions

anna.pollmann@uni-wuppertal.de

Monopole signal

Non-relativistic Magnetic Monopole signature

- decay of proton -> electromagnetic cascade
- probed speeds: $10^{-3} \leq \beta \leq 10^{-2}$
- typical event length
 ~ milli seconds
- background: PMT noise and muons
- reconstruction
 - search for independent local coincidences
 - triplets are 3 pairs of hits fulfilling certain conditions

Monopole signal + Air shower

- decay of proton -> electromagnetic cascade
- probed speeds: $10^{-3} \leq \beta \leq 10^{-2}$
- typical event length
 ~ milli seconds
- background: PMT noise and muons
- reconstruction
 - search for independent local coincidences
 - triplets are 3 pairs of hits fulfilling certain conditions

Monopole signal + Air shower + Noise

