

Indirect searches for dark matter with IceCube

Sebastian Baur for the IceCube collaboration

- Geographic South Pole
- 5,160 Digital
 Optical Modules
 (DOMs)

CECUBE

SOUTH POLE NEUTRING OBSE

- 86 string with 60 DOMs each
- 6 denser strings called DeepCore

From dark matter to neutrinos

Probe velocity-averaged DM annihilation cross section $\langle \sigma_{\rm A} v \rangle$

Only accessible with neutrinos Under equilibrium they can probe $\sigma_{\rm SI}$ and $\sigma_{\rm SD}$

Probe velocity-averaged DM annihilation cross section $\langle \sigma_{\rm A} v \rangle$

Probe velocity-averaged DM annihilation cross section $\langle \sigma_{\rm A} v \rangle$

[from J.A. Aguilar]

The basic method (annihilation case)

$$\frac{\mathrm{d}\Phi_{\nu}}{\mathrm{d}E_{\nu}} = \frac{1}{4\pi} \frac{\langle \sigma_{\mathrm{A}} v \rangle}{2m_{\chi}^{2}} \frac{\mathrm{d}N_{\nu}}{\mathrm{d}E_{\nu}} \int_{0}^{\Delta\Omega} \mathrm{d}\Omega \int_{\mathrm{l.o.s.}} \rho_{\chi}^{2} \left(s, \phi, \theta\right) \mathrm{d}s$$

Measurement: Neutrino flux

Constrain: annihilation cross section

Theory input:

Dark matter mass and final state energy spectra

Dark matter density distribution along the line of sight

S. Baur – Indirect Searches for DM with IceCube

Galactic center

To date 4 different IceCube analyses with different event samples covering masses 10 GeV - 300 TeV

[EPJC 77 (2017) 627]

Galactic center

- First combination with ANTARES in common mass-range
- Combine different field-of-views
- Unify theoretical input and likelihood minimization

[PoS (ICRC2019) 522]

Capture and self-annihilation in the Sun

- Local density model independent ~0.3 GeV/cm³
- In equilibrium dN/dt = 0: probe SD cross section on H

Capture and self-annihilation in the Sun

- Two event samples for low and high energies
- Most sensitive for low masses due to neutrino escape from the sun

Capture and self-annihilation in the Sun

- Two event samples for low and high energies
- Most sensitive for low masses due to neutr escape from the sun

IceCube+Pico: velocity independent limits

Assume superposition of streams with fixed velocity

 \rightarrow conservative limits by choosing the stream with highest allowed cross section

Secluded dark matter from the Sun

- DM annihilates into mediator V which decays close to the sun surface
- No limitations due to neutrino attenuation in the sun
- Mediator mass and lifetime are free parameters

Capture and self-annihilation in the Earth

- Challenging analysis due to unique position of Earth
- No equilibrium assumed \rightarrow limits on $\langle \sigma_{\rm A} v \rangle / \sigma_{\rm SI}$

Capture and self-annihilation in the Earth

- Challenging analysis due to unique position of Earth
- No equilibrium assumed \rightarrow limits on $\langle \sigma_{\rm A} v \rangle / \sigma_{\rm SI}$

Capture and self-annihilation in the Earth

Decaying dark matter in the galactic halo

$$\frac{\mathrm{d}\Phi_{\nu}}{\mathrm{d}E_{\nu}} = \frac{1}{4\pi} \frac{1}{m_{\chi}\tau_{\chi}} \frac{\mathrm{d}N_{\nu}}{\mathrm{d}E_{\nu}} \int_{0}^{\Delta\Omega} \mathrm{d}\Omega \int_{\mathrm{l.o.s.}} \rho_{\chi}\left(s,\phi,\theta\right) \mathrm{d}s$$

- Signal less concentrated on the Galactic Center
- Two independent data samples:
 - Track-like with 6 years of data
 - Cascade-like with 2 years of data
- Include also contributions from extra-galactic DM

Dark matter – neutrino scattering

- DM v scattering leads to deviations in the isotropic cosmic neutrino flux \rightarrow focus on high energies
- \rightarrow 7.5 years of high energy starting events support isotropic flux
- \rightarrow upper limit on allowed couplings

A glimpse to the future

Seven new strings in 2022/2023: Better efficiency and reconstruction at low energies

Summary

IceCube has a lively and expanding program of indirect searches for Dark Matter:

- No observation of a neutrino excess in IceCube compatible with dark matter expectations
- Results are competitive and complementary to other messengers
- More scenarios are being probed and constrained
- Many ongoing analyses with more data, improved event selection and reconstruction