Measurements of the neutrinonucleon cross section with IceCube

Tianlu Yuan for the IceCube collaboration

PPNT 2019

Uppsala, Sweden, 8 October 19

Event topologies

CC muon neutrino

$\nu_{\mu} + N \rightarrow \mu + X$

track (data)

angular resolution ~ 0.5° energy resolution ~ x2

NC or CC electron neutrino

 $\nu_e + N \to e + X$ $\nu_x + N \to \nu_x + X$

cascade (data)

angular resolution ~ 10° energy resolution ~ 15%

CC tau neutrino

 $\nu_{\tau} + N \rightarrow \tau + X$

"double-cascade" (simulation)

~2 expected in 6 years

Why cross sections

We work with counting experiments

 $N_{\rm MC} = \Phi_{\rm det}(\boldsymbol{\sigma}, \boldsymbol{\theta}) \boldsymbol{\sigma} N_{\rm targets}$ $\Phi_{\rm det} \text{ is the flux at detector and } \boldsymbol{\theta} \text{ is a set of model parameters}$

Need to know σ in order to predict $N_{\rm MC}$ and perform fits to data

In-Earth neutrino flux attenuation

High-energy neutrinos interact in the Earth \rightarrow flux attenuation Depends on energy E_{ν} and direction θ_{ν}

In-Earth neutrino flux attenuation

High-energy neutrinos interact in the Earth \rightarrow flux attenuation Depends on energy E_{ν} and direction θ_{ν} and cross section

Neutrino-nucleon cross section with upgoing events

Data from 2009-2010 (79 string configuration)

10,784 upward-going events

Fit single parameter $R = \sigma_{\rm meas}/\sigma_{\rm SM}$ in zenith and energy

Using contained cascades

BDT-based selection sensitive down to ~10 TeV

2012-2015 data (4 years)

H. Niederhausen EDS Blois 2019

PoS(ICRC2017)968 PoS(ICRC2015)1109 IC40 PRD89 102001 (2014) IC22 PRD84 072001 (2011)

Idea for measurement

Split sample into Northern (upgoing) and Southern (downgoing) regions

Ratio of down- vs up-going events depends on cross section

Iterative unfolding from reco \rightarrow true

Cross section with contained cascades

Result presented at DIS 2018 Paper in prep.

High energy starting event (HESE) selection

Contained search at high energies

Sensitive above 60 TeV

Outer layer acts as **active veto** of atmospheric muon *and* **indirect veto** of atmospheric neutrinos accompanied by sibling muons

Neutrinos in a haystack

Event distribution in HESE-7.5

102 events, with **60 events >60 TeV** Fit performed for events above 60 TeV

Updates:

- MC-likelihood JHEP06(2019) 030
- Newer ice model and reconstruction
- Updated atmospheric-ν estimate
 JCAP 1807 (2018) no.07, 047
- Additional systematics treatment

Above 60 TeV:

16 new events in last 1.5 years

Analysis method

Four bins as a function of E_{ν} with edges at 60 TeV, 100 TeV, 200 TeV, 500 TeV, and 10 PeV

• Denoted as: x_0, x_1, x_2, x_3

Scale nominal neutrino-nucleon cross section in each bin separately

- Assume: fixed σ_{CC}/σ_{NC} ratio, fixed $\sigma_{\nu}/\sigma_{\overline{\nu}}$ ratio, single-power-law flux
- CSMS calculation

Varied cross section leads to different **MC expectations** using nuSQUIDS

Ternary PIDs for three neutrino flavors, **full-sky** information, **improved** detector modeling and background calculations

Expected distributions and data

Assuming SPL flux with floating normalization can **measure** cross section

N. sky: Flux attenuation depends on cross section, energy, zenith

Systematics and priors/constraints

Parameter	Constraint/Prior	Range
Astrophysical neutrino flux:		
$\Phi_{ t astro}$	_	$[0,\infty)$
$\gamma_{ t astro}$	2.0 ± 1.0 ($-\infty,\infty)$
Atmospheric neutrino flux:		
$\Phi_{ t conv}$	1.0 ± 0.4	$[0,\infty)$
$\Phi_{ t prompt}$	1.0 ± 3.0	$[0,\infty)$
π/K	1.0 ± 0.1 ($-\infty,\infty)$
$2 \nu / \left(\nu + ar{ u} ight)_{\texttt{atmo}}$	1.0 ± 0.1	[0,2]
Cosmic ray flux:		
$\Delta\gamma_{ ext{CR}}$	$ -0.05 \pm 0.05$ ($-\infty,\infty)$
Φ_{μ}	1.0 ± 0.5	$[0,\infty)$

Results with HESE-7.5

Likelihood and posterior

Inelasticity y

Ratio of hadronic cascade energy to total neutrino energy

• NuTeV measured up to 250 GeV

Starting tracks and cascades \rightarrow Veto based

15 input variables

Further reject atmospheric μ bkg and classify signal into tracks/cascades

Reconstructing y_{vis}

PRD **99**, 032004

Fit for mean inelasticity

PRD **99**, 032004

Parameterize and reweight MC in terms of mean $\langle y \rangle$

Fit to y_{vis} distributions in each energy range

Summary

Several measurements of neutrino-nucleon interactions above TeV energies

- Neutrino-nucleon cross sections with various samples
- Inelasticity

Updates in the pipeline will incorporate additional years of data

Backups

Muons and neutrinos

S V	
ear	Part Cosmic ray

Event type	Rate
Atmospheric μ	~3 kHz
Atmospheric ν	~100k per year
Astrophysical ν	~100 per year